On the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell}$$\end{document}-adic valuation of the cardinality of elliptic curves over finite extensions of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{q}}$$\end{document}

被引:0
作者
Josep M. Miret
Jordi Pujolàs
Javier Valera
机构
[1] Universitat de Lleida,Departament de Matemàtica
关键词
11G20; Elliptic curve; Finite field; Group order; -adic valuation;
D O I
10.1007/s00013-015-0798-6
中图分类号
学科分类号
摘要
Let E be an elliptic curve defined over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{q}}$$\end{document} of odd characteristic. Let ℓ≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell \neq 2}$$\end{document} be a prime number different from the characteristic and dividing #E(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\# E(\mathbb{F}_{q})}$$\end{document}. We describe how the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell}$$\end{document}-adic valuation of the number of points grows by taking finite extensions of the base field. We also investigate the group structure of the corresponding ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell}$$\end{document}-Sylow subgroups.
引用
收藏
页码:261 / 269
页数:8
相关论文
共 9 条
[1]  
Ionica S.(2013)Pairing the volcano Mathematics of Computation 82 581-603
[2]  
Joux A.(1993)Reducing elliptic curve logarithms to logarithms in a finite field IEEE Trans, Inform. Theory 39 1639-1646
[3]  
Menezes A.J.(1987)A note on elliptic curves over finite fields Mathematics of Computation 49 301-304
[4]  
Okamoto T.(1987)Nonsingular plane cubic curves over finite fields Journal of Combinatorial Theory, Series A 46 183-211
[5]  
Vanstone S.A.(1988)A note on elliptic curves over finite fields Bulletin de la S.M.F., 116 455-458
[6]  
Rück H.-G.(2001)Group structure of elliptic curves over finite fields Journal of Number Theory 88 335-344
[7]  
Schoof R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Voloch J.F.(undefined)undefined undefined undefined undefined-undefined
[9]  
Wittmann C.(undefined)undefined undefined undefined undefined-undefined