Statistical A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{A}$$\end{document}-summation process and Korovkin type approximation theorem on modular spaces

被引:0
作者
Sevda Orhan
Kamil Demirci
机构
[1] Sinop University,Department of Mathematics, Faculty of Sciences and Arts
关键词
Positive linear operators; Modular space; Matrix summability; Korovkin theorem; 41A36; 47G10; 46E30;
D O I
10.1007/s11117-013-0269-x
中图分类号
学科分类号
摘要
In this paper, we obtain an extension of the classical Korovkin theorem for a sequence of positive linear operators on a modular space using a statistical A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{A}$$\end{document}-summation process. Also, we give an example which satisfies this theorem.
引用
收藏
页码:669 / 686
页数:17
相关论文
共 28 条
  • [1] Bardaro C(2013)Abstract Korovkin-type theorems in modular spaces and applications Cent. Eur. J. Math. 11 1774-1784
  • [2] Boccuto A(2006)Approximation properties in abstract modular spaces for a class of general sampling-type operators Appl. Anal. 85 383-413
  • [3] Dimitriou X(2007)Korovkin’s theorem in modular spaces Commentationes Math. 47 239-253
  • [4] Mantellini I(1973)Order summability and almost convergence Proc. Am. Math. Soc. 38 548-553
  • [5] Bardaro C(1996)On statistical limit points and the consistency of statistical convergence J. Math. Anal. Appl. 197 392-399
  • [6] Mantellini I(2006)-statistical core of a sequence Demonstratio Math. 33 343-353
  • [7] Bardaro C(1951)Sur la convergence statistique Colloq. Math. 2 241-244
  • [8] Mantellini I(1981)Densities and summability Pacific. J. Math. 95 293-305
  • [9] Bell HT(1985)On statistical convergence Analysis 5 301-313
  • [10] Connor J.S.(1993)Statistical limit points Proc. Am. Math. Soc. 118 1187-1192