New characterizations for the weighted (b, c)-inverse in rings and their applications

被引:0
作者
Sanzhang Xu
Dingguo Wang
Julio Benítez
机构
[1] Huaiyin Institute of Technology,Faculty of Mathematics and Physics
[2] Qufu Normal University,School of Mathematical Sciences
[3] Universitat Politècnica de València,undefined
[4] Instituto de Matemática Multidisciplinar,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Ring; (; )-weighted; (; )-inverse; Reverse order law; Product; Inner inverse; 16W10; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, necessary and sufficient conditions for a to be (v, w)-weighted (b, c)-invertible are given, where a, b, c, v, w are elements of a unital ring. The relationships between the (v, w)-weighted (b, c)-invertibility, annihilator (v, w)-weighted (b, c)-invertibility and left(resp. right) hybrid (v, w)-weighted (b, c)-invertibility are obtained.As applications, we investigate the reverse order law of the weighted (b, c)-inverse and left(resp. right) weighted (b, c)-invertibility of a product.
引用
收藏
相关论文
共 29 条
[1]  
Baksalary OM(2010)Core inverse of matrices Linear Multilinear Algebra 58 689-697
[2]  
Trenkler G(2017)On one-sided (B, C)-inverses of arbitrary matrices Electron. J. Linear Algebra 32 391-422
[3]  
Benítez J(2019)Further results on the (b, c)-inverse, the outer inverse Linear Multilinear Algebra 67 1006-1030
[4]  
Boasso E(2017) and the Moore-Penrose inverse in the Banach context Acta Math. Hungar. 151 181-198
[5]  
Jin HW(2007)The reverse order law of the (b, c)-inverse in semigroups J. Aust. Math. Soc. 82 163-181
[6]  
Boasso E(2012)The Weighted g-drazin inverse for operators Linear Algebra Appl. 436 1909-1923
[7]  
Chen J(2013)A class of outer generalized inverses Linear Multilinear Algebra 61 1675-1681
[8]  
Ke Y(2016)Commuting properties of generalized inverse Linear Algebra Appl. 510 64-78
[9]  
Mosić D(2017)Left and right generalized inverses Linear Multilinear Algebra 65 1770-1780
[10]  
Dajić A(2020)Bicommuting properties of generalized inverse Comm. Algebra 48 1423-1438