Distribution modulo 1 and the discrete universality of the Riemann zeta-function

被引:0
作者
Artūras Dubickas
Antanas Laurinčikas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2016年 / 86卷
关键词
Riemann zeta-function; Voronin’s theorem; Discrete universality; Distribution modulo 1; Primary 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain some new discrete universality theorems on the approximation of analytic functions by shifts of the Riemann zeta-function. The novelty in formulation is that it involves shifts not by an arithmetical progression as before but by a more general sequence that is uniformly distributed modulo 1.
引用
收藏
页码:79 / 87
页数:8
相关论文
共 5 条
[1]  
Laurinčikas A(2014)Improvement of the universality inequality Math. Notes 96 971-976
[2]  
Meška L(2014)A modification of the universality inequality Šiauliai Math. Semin. 9 71-81
[3]  
Meška L(1980)Werteverteilung von Zetafunktionen Arch. Math. 34 440-451
[4]  
Reich A(1975)A theorem on the “universality” of the Riemann zeta-function Math. USSR Izv. 9 443-453
[5]  
Voronin SM(undefined)undefined undefined undefined undefined-undefined