Stability of an m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m}{}$$\end{document}th root functional equation in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{C}^{*}$$\end{document}-algebras: a fixed point approach

被引:0
作者
Choonkil Park
Arslan Hojt Ansari
Muaadh Almahalebi
机构
[1] Hanyang University,Research Institute for Natural Sciences
[2] Islamic Azad University,Department of Mathematics, Karaj Branch
[3] Ibn Tofail,Department of Mathematics
[4] University,undefined
关键词
Hyers–Ulam stability; -algebra; convex cone; fixed point approach; root functional equation; 39B52; 46L05; 47H10;
D O I
10.1007/s11784-017-0431-3
中图分类号
学科分类号
摘要
In this paper, we introduce an mth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m{\text{th}}$$\end{document} root functional equation. Using the fixed point approach, we prove the Hyers–Ulam stability of the mth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m{\text{th}}$$\end{document} root functional equation in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-algebras.
引用
收藏
页码:2417 / 2425
页数:8
相关论文
共 30 条
[1]  
Alizadeh Z(2016)On the stability of a radical cubic functional equation in quasi- J. Fixed Point Theory Appl. 18 843-853
[2]  
Ghazanfari AG(1950)-spaces J. Math. Soc. Japan 2 64-66
[3]  
Aoki T(2004)On the stability of the linear transformation in Banach spaces Grazer Math. Ber. 346 43-52
[4]  
Cădariu L(1968)On the stability of the Cauchy functional equation: a fixed point approach Bull. Amer. Math. Soc. 74 305-309
[5]  
Radu V(1994)A fixed point theorem of the alternative for contractions on a generalized complete metric space J. Math. Anal. Appl. 184 431-436
[6]  
Diaz JB(1941)A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings Proc. Nat. Acad. Sci. USA 27 222-224
[7]  
Margolis B(1996)On the stability of the linear functional equation Int. J. Math. Math. Sci. 19 219-228
[8]  
Gǎvruta P(2010)Stability of J. Convex Anal. 17 293-299
[9]  
Hyers DH(2013) -additive mappings: applications to nonlinear analysis Fixed Point Theory 14 387-400
[10]  
Isac G(2008)A characterization of injective linear transformations J. Math. Anal. Appl. 343 567-572