Asynchronous, finite dynamical systems

被引:0
作者
Henning S. Mortveit
机构
[1] SEAS University of Virginia,Network Systems Science and Advanced Computing, BII. Systems and Information Engineering
来源
Natural Computing | 2023年 / 22卷
关键词
Boolean networks; Structure-to-function theory; Finite dynamical systems; Asynchronous; Acyclic orientations; Scheduling;
D O I
暂无
中图分类号
学科分类号
摘要
Asynchronous, finite dynamical systems are constructed by composing vertex functions f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1$$\end{document}, f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_2$$\end{document} through fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_n$$\end{document} using an order π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document} on {1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,\ldots ,n\}$$\end{document} to form maps fπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\pi$$\end{document}. This article provides a systematic review and new results for comparing the dynamics of maps fπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\pi$$\end{document} and fπ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\pi '}$$\end{document} formed using different composition orders π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document} and π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi '$$\end{document}. Comparisons are done at the level of (i) entire phase spaces (functional equivalence), (ii) the periodic orbits (cycle equivalence), and (iii) topological conjugation (dynamical equivalence). Conditions and criteria are given in terms of the dependency graph G of the vertex functions along with associated structures such as the acyclic orientations of G and the automorphism group of G. For each type of equivalence, graph-theoretic measures are provided that give an upper bound for the number of distinct structures that can be observed up to the respective notion of equivalence. Several connections to existing mathematical theory (e.g., combinatorics and graphs) are presented along with open questions.
引用
收藏
页码:357 / 377
页数:20
相关论文
共 65 条
[1]  
Aracena J(2009)On the robustness of update schedules in Boolean networks Biosystems 97 1-8
[2]  
Goles E(2011)Combinatorics on update digraphs in Boolean networks Discret Appl Math 159 401-409
[3]  
Moreira A(2022)Non-maximal sensitivity to synchronism in elementary cellular automata: exact asymptotic measures Theor Comput Sci 926 21-50
[4]  
Aracena J(2006)Complexity of reachability problems for finite discrete sequential dynamical systems J Comput Syst Sci 72 1317-1345
[5]  
Fanchon E(2023)Lipschitz continuity under toric equivalence for asynchronous Boolean networks Chaos 33 118-49
[6]  
Montalva M(2008)Robustness in regulatory networks: a multi-disciplinary approach Acta Biotheor 56 27-2287
[7]  
Balbi PP(2010)Attraction basins as gauges of robustness against boundary conditions in biological complex systems PLoS ONE 5 2263-197
[8]  
Formenti E(2015)Toric partial orders Trans Am Math Soc 368 4-1366
[9]  
Perrot K(2009)Conjugacy of coxeter elements Electron J Comb 16 179-135
[10]  
Barrett CL(2020)A tutorial on elementary cellular automata with fully asynchronous updating Nat Comput 10 1351-32