Quantum non-demolition measurement of a many-body Hamiltonian

被引:0
|
作者
Dayou Yang
Andrey Grankin
Lukas M. Sieberer
Denis V. Vasilyev
Peter Zoller
机构
[1] University of Innsbruck,Center for Quantum Physics
[2] Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In an ideal quantum measurement, the wave function of a quantum system collapses to an eigenstate of the measured observable, and the corresponding eigenvalue determines the measurement outcome. If the observable commutes with the system Hamiltonian, repeated measurements yield the same result and thus minimally disturb the system. Seminal quantum optics experiments have achieved such quantum non-demolition (QND) measurements of systems with few degrees of freedom. In contrast, here we describe how the QND measurement of a complex many-body observable, the Hamiltonian of an interacting many-body system, can be implemented in a trapped-ion analog quantum simulator. Through a single-shot measurement, the many-body system is prepared in a narrow band of (highly excited) energy eigenstates, and potentially even a single eigenstate. Our QND scheme, which can be carried over to other platforms of quantum simulation, provides a framework to investigate experimentally fundamental aspects of equilibrium and non-equilibrium statistical physics including the eigenstate thermalization hypothesis and quantum fluctuation relations.
引用
收藏
相关论文
共 50 条
  • [21] Quantum non-demolition measurements in optics
    Grangier, P
    Levenson, JA
    Poizat, JP
    NATURE, 1998, 396 (6711) : 537 - 542
  • [22] Quantum non-demolition measures in optics
    Grangier, P
    Grelu, P
    Poizat, JP
    Roch, JF
    ANNALES DE PHYSIQUE, 1995, 20 (5-6) : 675 - 680
  • [23] Quantum non-demolition measurements in optics
    Philippe Grangier
    Juan Ariel Levenson
    Jean-Philippe Poizat
    Nature, 1998, 396 : 537 - 542
  • [24] Repeated quantum non-demolition measurements
    Levenson, A
    Bencheikh, K
    APPLIED PHYSICS B-LASERS AND OPTICS, 1997, 64 (02): : 193 - 201
  • [25] Quantum non-demolition measurement of nonlocal variables and its application in quantum authentication
    Guo, GP
    Li, CF
    Guo, GC
    PHYSICS LETTERS A, 2001, 286 (06) : 401 - 404
  • [26] The advantage of quantum control in many-body Hamiltonian learning
    Dutkiewicz, Alicja
    O'Brien, Thomas E.
    Schuster, Thomas
    QUANTUM, 2024, 8
  • [27] Derivation of the quantum probability law from minimal non-demolition measurement
    Herbut, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (34) : 10549 - 10555
  • [28] Quantum non-demolition measurement of a superconducting two-level system
    Lupascu, A.
    Saito, S.
    Picot, T.
    De Groot, P. C.
    Harmans, C. J. P. M.
    Mooij, J. E.
    NATURE PHYSICS, 2007, 3 (02) : 119 - 123
  • [29] Fast polarimetry system for the application to spin quantum non-demolition measurement
    Takeuchi, M
    Takano, T
    Ichihara, S
    Yamaguchi, A
    Kumakura, M
    Yabuzaki, T
    Takahashi, Y
    APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 83 (01): : 33 - 36
  • [30] Quantum non-demolition measurement of a superconducting two-level system
    A. Lupaşcu
    S. Saito
    T. Picot
    P. C. de Groot
    C. J. P. M. Harmans
    J. E. Mooij
    Nature Physics, 2007, 3 : 119 - 123