Periodicity Criterion for Continued Fractions of Key Elements in Hyperelliptic Fields

被引:0
作者
V. P. Platonov
G. V. Fedorov
机构
[1] Scientific Research Institute for System Analysis,
[2] Russian Academy of Sciences,undefined
[3] Steklov Mathematical Institute,undefined
[4] Russian Academy of Sciences,undefined
[5] Faculty of Mechanics and Mathematics,undefined
[6] Lomonosov Moscow State University,undefined
来源
Doklady Mathematics | 2022年 / 106卷
关键词
continued fractions; fundamental units; -units; torsion in Jacobians; hyperelliptic fields; divisors; divisor class group;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:S262 / S269
相关论文
共 24 条
  • [1] Chebychev P. L.(1864)Sur l’integration de la differential J. Math. Pures Appl. 2 225-246
  • [2] Platonov V. P.(2014)Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field Russ. Math. Surv. 69 1-34
  • [3] Berry T. G.(1990)On periodicity of continued fractions in hyperelliptic function fields Arch. Math. 55 259-266
  • [4] Platonov V. P.(2018)On the problem of periodicity of continued fractions in hyperelliptic fields Sb. Math. 209 519-559
  • [5] Fedorov G. V.(2009)Groups of S-units in hyperelliptic fields and continued fractions Sb. Math. 200 1587-1615
  • [6] Benyash-Krivets V. V.(2018)Periodic continued fractions and S-units with second degree valuations in hyperelliptic fields Chebyshev. Sb. 19 282-297
  • [7] Platonov V. P.(2017)On the periodicity of continued fractions in hyperelliptic fields Dokl. Math. 95 254-258
  • [8] Fedorov G. V.(2017)On the periodicity of continued fractions in elliptic fields Dokl. Math. 96 332-335
  • [9] Platonov V. P.(2016)Continued rational fractions in hyperelliptic fields and the Mumford representation Dokl. Math. 94 692-696
  • [10] Fedorov G. V.(2018)Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields Proc. Steklov Inst. Math. 302 336-357