Elementary Regular Rings. II

被引:0
作者
Yu. L. Ershov
机构
来源
Siberian Mathematical Journal | 2004年 / 45卷
关键词
elementary product; defining sequence; elementary regular ring; ring of adeles;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the well-known result by Burris and Werner on existence of defining sequences for elementary products of models to arbitrary enrichments of Boolean algebras (we obtain a complete analog of the Feferman–Vaught theorem). This enables us to establish decidability of the elementary theory of a classical object of number theory, the ring of adeles.
引用
收藏
页码:459 / 464
页数:5
相关论文
共 7 条
[1]  
Ershov Y. L.(1993)Elementary regular rings Algebra i Logika 32 387-401
[2]  
Burris S.(1979)Sheaf constructions and their elementary properties Trans. Amer. Math. Soc. 248 268-309
[3]  
Werner H.(1959)The first order properties of products of algebraic systems Fund. Math. 47 57-103
[4]  
Feferman S.(2002)Nice local-global fields. IV Sibirsk. Mat. Zh. 43 526-538
[5]  
Vaught R. L.(1968)The elementary theory of finite fields Ann. Math. 88 239-271
[6]  
Ershov Y. L.(undefined)undefined undefined undefined undefined-undefined
[7]  
Ax J.(undefined)undefined undefined undefined undefined-undefined