Proximal Point Algorithms for a Hybrid Pair of Nonexpansive Single-Valued and Multi-Valued Mappings in Geodesic Metric Spaces

被引:0
作者
Suthep Suantai
Withun Phuengrattana
机构
[1] Chiang Mai University,Department of Mathematics Faculty of Science
[2] Nakhon Pathom Rajabhat University,Department of Mathematics Faculty of Science and Technology
[3] Nakhon Pathom Rajabhat University,Research Center for Pure and Applied Mathematics Research and Development Institute
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Geodesic metric spaces; fixed point; proximal point algorithm; nonexpansive mappings; 47H09; 47H10; 65K10; 65K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new proximal point algorithm for finding a common element of the set of fixed points of nonexpansive single-valued mappings, the set of fixed points of nonexpansive multi-valued mappings, and the set of minimizers of convex and lower semi-continuous functions. We obtain Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-convergence and strong convergence of the proposed algorithm to a common element of the three sets in CAT(0) spaces. Furthermore, we apply our convergence results to obtain in a special space of CAT(0) spaces, so-called R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}-tree, under the gate condition. A numerical example to support our main results is also given.
引用
收藏
相关论文
共 42 条
  • [1] Aksoy AG(2006)A selection theorem in metric trees Proc. Am. Math. Soc. 134 2957-2966
  • [2] Khamsi MA(2012)Some fixed point results on a metric space with a graph Topol. Appl. 159 659-663
  • [3] Aleomraninejad SMA(2009)Best approximation, coincidence and fixed point theorems for set-valued maps in Nonlinear Anal. 71 1649-1653
  • [4] Rezapour S(2014)-trees Trans. Am. Math. Soc. 366 4299-4322
  • [5] Shahzad N(2013)Firmly nonexpansive mappings in classes of geodesic spaces Isr. J. Math. 194 689-701
  • [6] Amini-Harandi A(2010)The proximal point algorithm in metric spaces Nonlinear Anal. 73 564-572
  • [7] Farajzadeh AP(1972)Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds Inst. Hautes Études Sci. Publ. Math. 41 5-251
  • [8] Ariza-Ruiz D(2007)Groupes réductifs sur un corps local J. Nonlinear Convex Anal. 8 35-45
  • [9] Leustean L(2006)Nonexpansive set-valued mappings in metric and Banach spaces Nonlinear Anal. 65 762-772
  • [10] Lopez G(2008)Fixed points of uniformly Lipschitzian mappings Comput. Math. Appl. 56 2572-2579