Almost complex structures in 6D with non-degenerate Nijenhuis tensors and large symmetry groups

被引:0
|
作者
B. S. Kruglikov
H. Winther
机构
[1] University of Tromsø,Department of Mathematics and Statistics, NT
来源
关键词
Nondegenerate almost complex structure; Submaximal symmetry; Strictly nearly pseudo Kähler manifold; Singular orbit; Globally homogeneous space; Dimension gap;
D O I
暂无
中图分类号
学科分类号
摘要
For an almost complex structure J in dimension 6 with non-degenerate Nijenhuis tensor NJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_J$$\end{document}, the automorphism group G=Aut(J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathop {\mathrm{Aut}}\nolimits (J)$$\end{document} of maximal dimension is the exceptional Lie group G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}. In this paper, we establish that the sub-maximal dimension of automorphism groups of almost complex structures with non-degenerate NJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_J$$\end{document}, i.e. the largest realizable dimension that is less than 14, is dimG=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim G=10$$\end{document}. Next, we prove that only three spaces realize this, and all of them are strictly nearly (pseudo-) Kähler and globally homogeneous. Moreover, we show that all examples with dimAut(J)=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \mathop {\mathrm{Aut}}\nolimits (J)=9$$\end{document} have semi-simple isotropy.
引用
收藏
页码:297 / 314
页数:17
相关论文
共 15 条