Quantifying coherence of quantum channels based on the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{z}$$\end{document}-relative Rényi entropy

被引:0
作者
Jiaorui Fan
Zhaoqi Wu
Shao-Ming Fei
机构
[1] Nanchang University,Department of Mathematics
[2] Capital Normal University,School of Mathematical Sciences
[3] Max-Planck-Institute for Mathematics in the Sciences,undefined
关键词
Quantum coherence; Generalized ; -; -relative Rényi entropy; Quantum channel; Choi–Jamiołkowski isomorphism;
D O I
10.1007/s11128-024-04309-w
中图分类号
学科分类号
摘要
By using the Choi–Jamiołkowski isomorphism, we propose a well-defined coherence measure of quantum channels based on the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-z-relative Rényi entropy. In addition, we present an alternative coherence measure of quantum channels by quantifying the commutativity between the channels and the completely dephasing channels with the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-z-relative Rényi entropy. Some elegant properties of the measures are illustrated in detail. Explicit formulas of these coherence measures are derived for some detailed typical quantum channels.
引用
收藏
相关论文
共 151 条
[21]  
Streitsov A(2016)The classical-quantum boundary for correlations: discord and related measures Phys. Rev. X 6 041028-undefined
[22]  
Singh U(2015)Quantum processes which do not use coherence Quantum Inf. Comput. 15 1355-undefined
[23]  
Dhar H(2005)Maximally coherent states Theor. Math. Phys. 143 681-undefined
[24]  
Brea M(2014)Quantum versus classical uncertainty New J. Phys. 16 063041-undefined
[25]  
Adesso G(2016)Witnessing quantum coherence in the presence of noise Phys. Rev. A 94 060302-undefined
[26]  
Zhu H(2014)Alternative framework for quantifying coherence J. Phys. A: Math. Theor. 47 135302-undefined
[27]  
Hayashi M(2017)A universal set of qubit quantum channels Phys. Rev. A 95 062327-undefined
[28]  
Chen L(2017)Resource theory of coherence: beyond states Phys. Lett. A 381 1670-undefined
[29]  
Datta N(2017)Cohering power of quantum operations Phys. Rev. A 95 052307-undefined
[30]  
Datta N(2019)Measures of coherence-generating power for quantum unital operations Phys. Rev. Lett. 122 190405-undefined