Quantifying coherence of quantum channels based on the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{z}$$\end{document}-relative Rényi entropy

被引:0
作者
Jiaorui Fan
Zhaoqi Wu
Shao-Ming Fei
机构
[1] Nanchang University,Department of Mathematics
[2] Capital Normal University,School of Mathematical Sciences
[3] Max-Planck-Institute for Mathematics in the Sciences,undefined
关键词
Quantum coherence; Generalized ; -; -relative Rényi entropy; Quantum channel; Choi–Jamiołkowski isomorphism;
D O I
10.1007/s11128-024-04309-w
中图分类号
学科分类号
摘要
By using the Choi–Jamiołkowski isomorphism, we propose a well-defined coherence measure of quantum channels based on the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-z-relative Rényi entropy. In addition, we present an alternative coherence measure of quantum channels by quantifying the commutativity between the channels and the completely dephasing channels with the generalized α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-z-relative Rényi entropy. Some elegant properties of the measures are illustrated in detail. Explicit formulas of these coherence measures are derived for some detailed typical quantum channels.
引用
收藏
相关论文
共 151 条
[1]  
Baumgratz T(2014)Quantifying coherence Phys. Rev. Lett. 113 140401-undefined
[2]  
Cramer M(2018)Asymmetry and coherence weight of quantum states Phys. Rev. A 97 032342-undefined
[3]  
Plenio MB(2017)Quantum coherence via skew information and its polygamy Phys. Rev. A 95 042337-undefined
[4]  
Bu K(1976)The “transition probability” in the state space of a *-algebra Rep. Math. Phys. 9 273-undefined
[5]  
Anand N(2017)A new coherence measure based on fidelity Quantum Inf. Process. 16 198-undefined
[6]  
Singh U(2019)Quantifying quantum coherence based on the generalized Quantum Inf. Process. 18 179-undefined
[7]  
Yu C(2020)-z-relative Rényi entropy Quantum Inf. Process. 19 154-undefined
[8]  
Uhlmann A(2015)Coherence and complementarity based on modified generalized skew information Phys. Rev. Lett. 115 020403-undefined
[9]  
Liu C(2017)Measuring quantum coherence with entanglement J. Phys. A: Math. Theor. 50 475303-undefined
[10]  
Zhang D(2009)Coherence and entanglement measures based on Rényi relative entropies IEEE Trans. Inf. Theory. 55 2816-undefined