An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs

被引:0
作者
R. Yamamoto
H. Konno
机构
[1] Chuo University,Department of Industrial and Systems Engineering
[2] MTB Investment Technology Institute Company,undefined
来源
Journal of Optimization Theory and Applications | 2007年 / 133卷
关键词
Nonlinear fractional programs; Global optimization; Dinkelbach method; Nonconvex quadratic programming problems; Integer programming; Local search algorithms; Portfolio analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with an efficient algorithm for solving a convex-convex type quadratic fractional program whose objective function is defined as the ratio of two convex quadratic functions and whose constraints are linear. This is a typical nonconcave maximization problem with multiple local maxima.
引用
收藏
页码:241 / 255
页数:14
相关论文
共 14 条
[1]  
Charnes A.(1962)Programming with linear fractional functions Nav. Res. Logist. Q. 9 181-186
[2]  
Cooper W.W.(1976)Fractional programming II, on Dinkelbach’s algorithm Manag. Sci. 22 868-873
[3]  
Schaible S.(1967)On nonlinear fractional programming Manag. Sci. 13 492-498
[4]  
Dinkelbach W.(1991)Global optimization of fractional programs J. Glob. Optim. 1 173-182
[5]  
Pardalos P.M.(1997)Maximizing predictability in the stock and bond markets Macroecon. Dyn. 1 102-134
[6]  
Phillips A.T.(2001)Maximization of the ratio of two convex quadratic functions over a polytope Comput. Optim. Appl. 20 43-60
[7]  
Lo A.(1995)Decomposition branch and bound method for globally solving linearly constrained indefinite quadratic minimization problems Oper. Res. Lett. 17 215-220
[8]  
Mackinlay C.(1983)Parametric approaches to fractional programs Math. Program. 26 345-362
[9]  
Gotoh J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Konno H.(undefined)undefined undefined undefined undefined-undefined