Anisotropic inverse harmonic mean curvature flow

被引:0
作者
Jian Lu
机构
[1] Zhejiang University of Technology,Department of Applied Mathematics
来源
Frontiers of Mathematics in China | 2014年 / 9卷
关键词
Curvature flow; parabolic equation; asymptotic behavior; 35J60; 35K45; 52C44; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the evolution of convex hypersurfaces [inline-graphic not available: see fulltext] with initial [inline-graphic not available: see fulltext] at a rate equal to H — f along its outer normal, where H is the inverse of harmonic mean curvature of [inline-graphic not available: see fulltext] is a smooth, closed, and uniformly convex hypersurface. We find a θ* > 0 and a sufficient condition about the anisotropic function f, such that if θ > θ*, then [inline-graphic not available: see fulltext] remains uniformly convex and expands to infinity as t → + ∞ and its scaling, [inline-graphic not available: see fulltext], converges to a sphere. In addition, the convergence result is generalized to the fully nonlinear case in which the evolution rate is logH-log f instead of H-f.
引用
收藏
页码:509 / 521
页数:12
相关论文
共 50 条
[41]   NON-COLLAPSING FOR A FULLY NONLINEAR INVERSE CURVATURE FLOW [J].
Liu, Yannan ;
Ju, Hongjie .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) :945-952
[42]   Asymptotic behavior and stability of mean curvature flow with a conical end [J].
Guo, Siao-Hao .
ADVANCES IN MATHEMATICS, 2020, 375
[43]   Bounding dimension of ambient space by density for mean curvature flow [J].
Calle, M .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (03) :655-668
[44]   Bounding dimension of ambient space by density for mean curvature flow [J].
Maria Calle .
Mathematische Zeitschrift, 2006, 252 :655-668
[45]   WEAK SOLUTIONS TO THE HEAT FLOW FOR SURFACES OF PRESCRIBED MEAN CURVATURE [J].
Boegelein, Verena ;
Duzaar, Frank ;
Scheven, Christoph .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (09) :4633-4677
[46]   Mean curvature flow with linear oblique derivative boundary conditions [J].
Peihe Wang ;
Yuna Zhang .
Science China Mathematics, 2022, 65 :1413-1430
[47]   Mean curvature flow with linear oblique derivative boundary conditions [J].
Wang, Peihe ;
Zhang, Yuna .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (07) :1413-1430
[48]   Optimizing design for progressive addition lenses by mean curvature flow [J].
Tang Y. ;
Wu Q. ;
Qian L. ;
Liu L. .
Guangxue Xuebao/Acta Optica Sinica, 2011, 31 (05)
[49]   Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains [J].
Ma, Xi-Nan ;
Wang, Pei-He ;
Wei, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (01) :252-277
[50]   Interior gradient estimate for 1-D anisotropic curvature flow [J].
Nagase, Yuko ;
Tonegawa, Yoshihiro .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2) :93-98