Anisotropic inverse harmonic mean curvature flow

被引:0
作者
Jian Lu
机构
[1] Zhejiang University of Technology,Department of Applied Mathematics
来源
Frontiers of Mathematics in China | 2014年 / 9卷
关键词
Curvature flow; parabolic equation; asymptotic behavior; 35J60; 35K45; 52C44; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the evolution of convex hypersurfaces [inline-graphic not available: see fulltext] with initial [inline-graphic not available: see fulltext] at a rate equal to H — f along its outer normal, where H is the inverse of harmonic mean curvature of [inline-graphic not available: see fulltext] is a smooth, closed, and uniformly convex hypersurface. We find a θ* > 0 and a sufficient condition about the anisotropic function f, such that if θ > θ*, then [inline-graphic not available: see fulltext] remains uniformly convex and expands to infinity as t → + ∞ and its scaling, [inline-graphic not available: see fulltext], converges to a sphere. In addition, the convergence result is generalized to the fully nonlinear case in which the evolution rate is logH-log f instead of H-f.
引用
收藏
页码:509 / 521
页数:12
相关论文
共 50 条
  • [21] Properness of translating solitons for the mean curvature flow
    Kim, Daehwan
    Pyo, Juncheol
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (04)
  • [22] Crystalline Mean Curvature Flow of Convex Sets
    Giovanni Bellettini
    Vicent Caselles
    Antonin Chambolle
    Matteo Novaga
    Archive for Rational Mechanics and Analysis, 2006, 179 : 109 - 152
  • [23] Rigidity of generic singularities of mean curvature flow
    Tobias Holck Colding
    Tom Ilmanen
    William P. Minicozzi
    Publications mathématiques de l'IHÉS, 2015, 121 : 363 - 382
  • [24] Singularity of mean curvature flow of Lagrangian submanifolds
    Jingyi Chen
    Jiayu Li
    Inventiones mathematicae, 2004, 156 : 25 - 51
  • [25] The mixed volume preserving mean curvature flow
    McCoy, JA
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 155 - 166
  • [26] The mixed volume preserving mean curvature flow
    James A. McCoy
    Mathematische Zeitschrift, 2004, 246 : 155 - 166
  • [27] Harnack inequality for the Lagrangian mean curvature flow
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 247 - 258
  • [28] On the Type IIb solutions to mean curvature flow
    Cheng, Liang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8350 - 8369
  • [29] PROPERTIES OF TRANSLATING SOLUTIONS TO MEAN CURVATURE FLOW
    Gui, Changfeng
    Jian, Huaiyu
    Ju, Hongjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) : 441 - 453
  • [30] Longtime existence of the Lagrangian mean curvature flow
    Smoczyk, K
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (01) : 25 - 46