Implication type properties for lemniscate starlike and close-to-convex mappings

被引:0
作者
Wasim Ul Haq
Momna Bibi
机构
[1] Abbottabad University of Science and Technology,Department of Mathematics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Holomorphic functions; Lemniscate starlike; Lemniscate close-to-convex; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we use the combination of differential operators f′(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(z)$$\end{document} and 1+zf′′(z)/f′(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1+{zf''(z)}/{f'(z)}$$\end{document} to establish some sufficient criterion for lemniscate starlike and close-to-convex holomorphic (analytic) mappings. The geometrical view point of our main results is also given. Some motivational consequences of our main theorems are also observed.
引用
收藏
相关论文
共 34 条
[1]  
Al-Amiri HS(1975)On a linear combination of some expressions in the theory of univalent functions Monatsh. Math. 80 257-264
[2]  
Reade MO(2012)Radii of starlikness and convexity for function with fixed second coefficient defined by subordination Filomat. 26 553-561
[3]  
Ali RM(2012)Radii of starlikness associated with the lemniscate of Bernoulli and the left-half plane Appl. Math. Comput. 218 6557-6565
[4]  
Cho NE(2011)On a subclass of strongly starlike functions Appl. Math. Lett. 24 27-32
[5]  
Jain N(2016)Certain sufficient conditions for parabolic starlike and uniformly close-to-convex Stud. Univ. Babeş-Bolyai Math. Model. 61 53-62
[6]  
Ravichandran V(1971)Functions starlike and convex of Order J. Lond. Math. Soc. 2 469-474
[7]  
Ali RM(1976)Generating functions for some classes of univalent functions Proc. Am. Math. Soc. 56 111-117
[8]  
Jain N(2000)On starlike criteria defined by Silverman Zeszyty Nauk. Politech. Rzeszowskiej. Mat. 181 59-64
[9]  
Ravichandran V(1999)Convex and starlike criteria Int. J. Math. Sci. 22 75-79
[10]  
Aouf MK(2007)On a problem of univalence of functions satisfying a differential inequality Math. Inequal. Appl. 10 95-98