Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths

被引:1
作者
Jean-François Coeurjolly
机构
[1] University Joseph Fourier,IMAG
关键词
fractional Brownian motion; fractional Gaussian noise; discrete variations; consistency; self-similarity;
D O I
10.1023/A:1017507306245
中图分类号
学科分类号
摘要
This paper develops a class of consistent estimators of the parameters of a fractional Brownian motion based on the asymptotic behavior of the k-th absolute moment of discrete variations of its sampled paths over a discrete grid of the interval [0,1]. We derive explicit convergence rates for these types of estimators, valid through the whole range 0 < H < 1 of the self-similarity parameter. We also establish the asymptotic normality of our estimators. The effectiveness of our procedure is investigated in a simulation study.
引用
收藏
页码:199 / 227
页数:28
相关论文
共 37 条
[1]  
Abry P.(1998)Wavelet analysis of long-range-dependent traffic IEEE Trans. Inform. Theo. 14 2-15
[2]  
Veitch D.(1998)Gaussian processes and pseudodifferential elliptic operators Revista Mathematica Iberoamericana 13 19-89
[3]  
Benassi A.(1992)A goodness of fit test for time series with long range dependence J. Roy. Statist. Soc. B 54 749-760
[4]  
Jaffard S.(1983)Central limit theorems for non-linear functionals of Gaussian fields J. Multiv. Anal. 3 425-441
[5]  
Roux D.(1994)Upright, correlated random walks: A statistical-biomechanics approach to the human postural control system Chaos 5 57-63
[6]  
Beran J.(1987)Tests for Hurst effect Biometrika 74 95-101
[7]  
Breuer P.(1966)The typical spectral shape of an economic variable Econometrica 34 150-161
[8]  
Major P.(1989)Convergence en loi des H-variations d'un processus Gaussien stationnaire sur R Ann. Inst. H. Poincaré 25 265-282
[9]  
Collins J. J.(1988)Approach to an irregular time series on the basis of the fractal theory Physica D 31 277-283
[10]  
De Luca C. J.(1997)Quadratic variations and estimation of the Hölder index of a Gaussian process Ann. Inst. Henri Poincaré 33 407-436