Existence, nonexistence, and multiplicity of solutions for the fractional p&q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\&q$\end{document}-Laplacian equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}

被引:0
作者
Caisheng Chen
Jinfeng Bao
机构
[1] Hohai University,College of Science
[2] Nanjing Forestry University,College of Science
关键词
fractional ; -Laplacian equation; condition; variational methods; 35R11; 35A15; 35J60; 35J92;
D O I
10.1186/s13661-016-0661-0
中图分类号
学科分类号
摘要
In this paper, we study the existence, nonexistence, and multiplicity of solutions to the following fractional p&q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\&q$\end{document}-Laplacian equation: 0.1(−Δ)psu+a(x)|u|p−2u+(−Δ)qsu+b(x)|u|q−2u+μ(x)|u|r−2u=λh(x)|u|m−2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &(-\Delta)^{s}_{p}u + a(x)\vert u\vert ^{p-2}u +(-\Delta)^{s}_{q}u + b(x)\vert u\vert ^{q-2}u +\mu(x)\vert u\vert ^{r-2}u \\ &\quad= \lambda h(x)\vert u \vert ^{m-2}u,\quad x\in {\mathbb {R}}^{N}, \end{aligned}$$ \end{document} where λ is a real parameter, (−Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta)_{p}^{s} $\end{document} and (−Δ)qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )_{q}^{s} $\end{document} are the fractional p&q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\&q$\end{document}-Laplacian operators with 0<s<1<q<p,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< s<1<q<p, r>1$\end{document} and sp<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$sp< N$\end{document}, and the functions a(x),b(x),μ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(x), b(x),\mu(x)$\end{document}, and h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(x)$\end{document} are nonnegative in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb {R}}^{N}$\end{document}. Three cases on p,q,r,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q,r,m$\end{document} are considered: p<m<r<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p< m< r< p_{s}^{*}$\end{document}, max{p,r}<m<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\max\{p,r\}< m< p_{s}^{*}$\end{document}, and 1<m<q<r<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< m< q< r< p_{s}^{*}$\end{document}. Using variational methods, we prove the existence, nonexistence, and multiplicity of solutions to Eq. (0.1) depending on λ,p,q,r,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda, p,q,r,m$\end{document} and the integrability properties of the ratio hr−p/μm−p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h^{r-p}/\mu^{m-p}$\end{document}. Our results extend the previous work in Bartolo et al. (J. Math. Anal. Appl. 438:29-41, 2016) and Chaves et al. (Nonlinear Anal. 114:133-141, 2015) to the fractional p&q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\&q$\end{document}-Laplacian equation (0.1).
引用
收藏
相关论文
共 41 条
[1]  
Bartolo R(2016)On a class of superlinear J. Math. Anal. Appl. 438 29-41
[2]  
Candela AM(2015)-Laplacian type equations on Nonlinear Anal. 114 133-141
[3]  
Salvatore A(2012)Existence of a nontrivial solution for the Bull. Sci. Math. 136 521-573
[4]  
Chaves MF(2014)-Laplacian in Riv. Mat. Univ. Parma 5 315-328
[5]  
Ercole G(2015) without the Ambrosetti-Rabinowitz condition Calc. Var. 54 2785-2806
[6]  
Miyagaki OH(2016)Hitchhiker’s guide to the fractional Sobolev spaces J. Differ. Equ. 260 1392-1413
[7]  
Di Nezza E(2005)Fractional Commun. Pure Appl. Anal. 4 9-22
[8]  
Palatucci G(2008)-eigenvalues Ann. Acad. Sci. Fenn., Math. 33 337-371
[9]  
Valdinoci E(2015)Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional J. Math. Anal. Appl. 427 1205-1233
[10]  
Franzina G(2008)-Laplacian in Nonlinear Anal. 68 1100-1119