Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer

被引:0
作者
I. A. Blatov
A. I. Zadorin
E. V. Kitaeva
机构
[1] Povolzhskiy State University of Telecommunications and Informatics,
[2] Sobolev Institute of Mathematics,undefined
[3] Siberian Branch,undefined
[4] Russian Academy of Sciences,undefined
[5] Samara University,undefined
来源
Computational Mathematics and Mathematical Physics | 2019年 / 59卷
关键词
function of one variable; exponential boundary layer; Shishkin grid; cubic spline; approximation of derivatives; error estimate;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:343 / 354
页数:11
相关论文
共 18 条
  • [1] Il’in A. M.(1969)Differencing scheme for a differential equation with a small parameter affecting the highest derivative Math. Notes 6 596-602
  • [2] Bakhvalov N. S.(1969)The optimization of methods of solving boundary value problems with a boundary layer USSR Comput. Math. Math. Phys. 9 139-166
  • [3] Blatov I. A.(2017)Cubic spline interpolation of functions with high gradients in boundary layers Comput. Math. Math. Phys. 57 7-25
  • [4] Zadorin A. I.(2017)Parabolic spline interpolation for functions with large gradient in the boundary layer Sib. Math. J. 58 578-590
  • [5] Kitaeva E. V.(2017)On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer Numer. Anal. Appl. 10 108-119
  • [6] Blatov I. A.(2014)Interpolation by splines of even degree according to Subbotin and Marsden Ukr. Math. J. 66 994-1012
  • [7] Zadorin A. I.(2001)Approximation of derivatives in a convection-diffusion two-point boundary value problem Appl. Numer. Math. 39 47-60
  • [8] Kitaeva E. V.(2007)Method of interpolation for a boundary layer problem Sib. Zh. Vychisl. Mat. 10 267-275
  • [9] Blatov I. A.(2001)The necessity of Shishkin decompositions Appl. Math. Lett. 14 891-896
  • [10] Zadorin A. I.(2015)Lagrange interpolation and Newton–Cotes formulas for functions with a boundary layer component on piecewise uniform meshes Numer. Anal. Appl. 8 235-247