Green’s relations and regularity for semigroups of transformations that preserve order and a double direction equivalence

被引:0
作者
Lun-Zhi Deng
Ji-Wen Zeng
Tai-Jie You
机构
[1] Guizhou Normal University,School of Mathematics and Computer Science
[2] Xiamen University,School of Mathematical Sciences
来源
Semigroup Forum | 2012年 / 84卷
关键词
Semigroups; Order preserving transformations; Green’s relations; Regular semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let TX be the full transformation semigroup on a set X, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{E^*}(X)=\{\alpha\in T_X:\forall x,y\in X, (x,y)\in E\Leftrightarrow (x\alpha,y\alpha)\in E\}$$\end{document} be the subsemigroup of TX determined by an equivalence E on X. In this paper the set X under consideration is a totally ordered set with n points. The set of all order preserving transformations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{E^{*}}(X)$\end{document} forms a subsemigroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{E^{*}}(X)$\end{document} denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_{E^*}(X)=\{\alpha\in T_{E^*}(X): \forall x,y\in X, x\leq y\Rightarrow x\alpha\leq y\alpha\}.$$\end{document} In this paper, we discuss Green’s relations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O_{E^{*}}(X)$\end{document} and prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O_{E^{*}}(X)$\end{document} is a regular semigroup.
引用
收藏
页码:59 / 68
页数:9
相关论文
共 6 条
[1]  
Green J.A.(1951)On the structure of semigroups Ann. Math. 54 136-172
[2]  
Gomes G.M.S.(1992)On the rank of certain semigroups of order-preserving transformations Semigroup Forum 45 272-282
[3]  
Howie J.M.(2005)Regularity and green’s relations for semigroups of transformations that preserve an equivalence Commun. Algebra 33 109-118
[4]  
Pei H.-s.(2005)Green’s equivalence on semigroups of transformations preserving order and an equivalence relation Semigroup Forum 71 241-251
[5]  
Pei H.-s.(2010)Green’s relations and regularity for semigroups of transformations that preserve double direction equivalence Semigroup Forum 80 416-425
[6]  
Deng L.-Z.(undefined)undefined undefined undefined undefined-undefined