About reaction–diffusion systems involving the Holling-type II and the Beddington–DeAngelis functional responses for predator–prey models

被引:0
作者
F. Conforto
Laurent Desvillettes
C. Soresina
机构
[1] Università di Messina,Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra
[2] Université Paris Diderot,undefined
[3] IMJ-PRG,undefined
[4] CMAF-CIO Centro de Matemática,undefined
[5] Aplicações Fundamentais e Investigação,undefined
[6] Faculdade de Ciências,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2018年 / 25卷
关键词
Cross-diffusion equations; Predator–prey equations; Turing instability; Turing patterns; functional responses; 35B25; 35B36; 35K45; 35K57; 35Q92; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider in this paper a microscopic model (that is, a system of three reaction–diffusion equations) incorporating the dynamics of handling and searching predators, and show that its solutions converge when a small parameter tends to 0 towards the solutions of a reaction–cross diffusion system of predator–prey type involving a Holling-type II or Beddington–DeAngelis functional response. We also provide a study of the Turing instability domain of the obtained equations and (in the case of the Beddington–DeAngelis functional response) compare it to the same instability domain when the cross diffusion is replaced by a standard diffusion.
引用
收藏
相关论文
共 77 条
  • [1] Holling CS(1966)The functional response of invertebrate predators to prey density Mem. Entomol. Soc. Can. 98 5-86
  • [2] Beddington J(1975)Mutual interference between parasites or predators and its effect on searching efficiency J. Anim. Ecol. 44 331-340
  • [3] DeAngelis DL(1975)A model for trophic interaction Ecology 56 881-892
  • [4] Goldstein R(2000)The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15 337-341
  • [5] O’Neill R(2012)Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response Phys. Rev. E 85 021924-190
  • [6] Abrams PA(2012)Existence of complex patterns in the Beddington–DeAngelis predator–prey model Math. Biosci. 239 179-34
  • [7] Ginzburg LR(2002)Mutual interference between predators can give rise to turing spatial patterns Ecology 83 28-98
  • [8] Zhang X-C(2005)Turing patterns in a modified Lotka–Volterra model Phys. Lett. A 342 90-63
  • [9] Sun G-Q(1999)A minimal model of pattern formation in a prey–predator system Math. Comput. Modell. 29 49-174
  • [10] Jin Z(2001)Wave of Chaos: new mechanism of pattern formation in spatio-temporal population dynamics Theor. Popul. Biol. 59 157-370