The Andrews–Gordon Identities and q-Multinomial Coefficients

被引:0
作者
S. Ole Warnaar
机构
[1] Department of Mathematics,
[2] University of Melbourne,undefined
[3] Parkville,undefined
[4] Victoria 3052,undefined
[5] Australia. E-mail: warnaar@maths.mu.oz.au,undefined
来源
Communications in Mathematical Physics | 1997年 / 184卷
关键词
Generate Function; Partition Function; Analytic Form; Polynomial Identity; Fractional Level;
D O I
暂无
中图分类号
学科分类号
摘要
We prove polynomial boson-fermion identities for the generating function of the number of partitions of n of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=\sum_{j=1}^{L-1} j f_j$\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f_1\leq i-1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f_{L-1} \leq i'-1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f_j+f_{j+1}\leq k$\end{document}. The bosonic side of the identities involves q-deformations of the coefficients of xa in the expansion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(1+x+\cdots+ x^k)^L$\end{document}. A combinatorial interpretation for these q-multinomial coefficients is given using Durfee dissection partitions. The fermionic side of the polynomial identities arises as the partition function of a one-dimensional lattice-gas of fermionic particles.
引用
收藏
页码:203 / 232
页数:29
相关论文
empty
未找到相关数据