Fracture Mechanisms of Low Activation 12% Chromium Ferritic-Martensitic Steel EK-181 in the Temperature Range from –196 to 800°C

被引:0
|
作者
N. A. Polekhina
I. Yu. Litovchenko
K. V. Almaeva
A. N. Tyumentsev
Yu. P. Pinzhin
V. M. Chernov
M. V. Leontieva-Smirnova
机构
[1] Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences,
[2] Bochvar High-Technology Research Institute of Inorganic Materials,undefined
来源
Russian Physics Journal | 2021年 / 64卷
关键词
ferritic-martensitic steel; low-activation steel; fracture mechanism; fractography; high-temperature thermomechanical treatment;
D O I
暂无
中图分类号
学科分类号
摘要
A comparative study of the fracture features of a promising low-activation 12% chromium ferritic-martensitic steel EK-181 after uniaxial tensile tests in the temperature range from –196 to 800°C in the states after traditional heat treatment (THT) and high-temperature thermomechanical treatment (HTMT) is carried out. It is shown that the features of steel fracture weakly depend on the treatment mode and are determined by the temperature dependence of its yield stress. In the temperature range from –196 to 20°С, there are differences in the orientation of secondary microcracks depending on the treatment mode – after HTMT they are mainly parallel to the rolling plane, after THT their orientation is more chaotic. At Т ≥ 300°С, the differences in the type of steel fracture after the experimental treatments practically disappear. When the temperature decreases from 20 to –80°С, the fracture mechanism of steel after both treatments changes from mixed (by the mechanisms of transcrystalline dimple fracture and transcrystallite quasi-cleavage) to brittle fracture with quasi-cleavage. At the same time, some elements of brittle intercrystalline fracture are found, the fraction of which increases with the temperature decreasing from 20 to –196°С. In the region of positive temperatures from 350 to 800°С, destruction occurs by the mechanism of ductile transcrystalline dimple fracture.
引用
收藏
页码:1468 / 1473
页数:5
相关论文
共 50 条
  • [1] Fracture Mechanisms of Low Activation 12% Chromium Ferritic-Martensitic Steel EK-181 in the Temperature Range from-196 to 800°C
    Polekhina, N. A.
    Litovchenko, I. Yu
    Almaeva, K., V
    Tyumentsev, A. N.
    Pinzhin, Yu P.
    Chernov, V. M.
    Leontieva-Smirnova, M., V
    RUSSIAN PHYSICS JOURNAL, 2021, 64 (08) : 1468 - 1473
  • [2] Temperature Dependences of Mechanical Properties and Fracture Features of Low-Activation Ferritic-Martensitic EK-181 Steel in a Temperature Range from – 196 to 720°C
    N. A. Polekhina
    I. Yu. Litovchenko
    A. N. Tyumentsev
    S. A. Akkuzin
    V. M. Chernov
    M. V. Leontyeva-Smirnova
    Physics of Atomic Nuclei, 2018, 81 : 1024 - 1032
  • [3] Temperature Dependences of Mechanical Properties and Fracture Features of Low-Activation Ferritic-Martensitic EK-181 Steel in a Temperature Range from-196 to 720°C
    Polekhina, N. A.
    Litovchenko, I. Yu.
    Tyumentsev, A. N.
    Akkuzin, S. A.
    Chernov, V. M.
    Leontyeva-Smirnova, M. V.
    PHYSICS OF ATOMIC NUCLEI, 2018, 81 (07) : 1024 - 1032
  • [4] Features of Phase Transformations of Low-activation 12%-Chromium Ferritic-Martensitic Steel Ek-181
    Polekhina, N. A.
    Litovchenko, I. Yu.
    Almaeva, K. V.
    Bulina, N. V.
    Korchagin, M. A.
    Tyumentsev, A. N.
    Chernov, V. M.
    Leontyeva-Smirnova, M. V.
    RUSSIAN PHYSICS JOURNAL, 2020, 62 (12) : 2314 - 2318
  • [5] Features of Phase Transformations of Low-activation 12%-Chromium Ferritic-Martensitic Steel Ek-181
    N. A. Polekhina
    I. Yu. Litovchenko
    K.V. Almaeva
    N. V. Bulina
    M. A. Korchagin
    A. N. Tyumentsev
    V. M. Chernov
    M.V. Leontyeva-Smirnova
    Russian Physics Journal, 2020, 62 : 2314 - 2318
  • [6] Correction to: Features of Phase Transformations of Low-Activation 12%-Chromium Ferritic-Martensitic Steel EK-181
    N. A. Polekhina
    I. Yu. Litovchenko
    K.V. Almaeva
    N. V. Bulina
    M. A. Korchagin
    A. N. Tyumentsev
    V. M. Chernov
    M.V. Leontyeva-Smirnova
    Russian Physics Journal, 2020, 63 : 344 - 344
  • [7] Hydrogen interaction with the low activation ferritic-martensitic steel EK-181 (Rusfer)
    Golubeva, A. V.
    Bobyr, N. P.
    Cherkez, D. I.
    Spitsyn, A. V.
    Mayer, M.
    Gasparyan, Yu. M.
    Efimov, V. S.
    Chernov, V. M.
    Leontieva-Smirnova, M. V.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S983 - S987
  • [8] The Microstructural Stability of Low-activation 12%-Chromium Ferritic-Martensitic Steel EK-181 during Thermal Aging
    Polekhina, N. A.
    Litovchenko, I. Yu.
    Tyumentsev, A. N.
    Astafurova, E. G.
    Chernov, V. M.
    Leontyeva-Smirnova, M. V.
    Mironova, E. G.
    Budylkin, N. I.
    INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014, 2014, 1623 : 495 - 498
  • [9] Deformed Microstructure of Ferritic-Martensitic Steel EK-181
    Almaeva, K. V.
    Polekhina, N. A.
    Litovchenko, I. Yu.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019, 2019, 2167
  • [10] Mechanical Properties and Fracture Features of Low-Activation Ferritic-Martensitic Steel EK-181 at Subzero Temperatures
    Polekhina, N. A.
    Litovchenko, I. Yu.
    Tyumentsev, A. N.
    Kravchenko, D. A.
    Chernov, V. M.
    Leontyeva-Smirnova, M. V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS'17), 2017, 1909