Some group theoretical aspects of nonlinear quantal oscillators

被引:4
作者
Andriopoulos K. [1 ,2 ]
Leach P.G.L. [1 ,3 ]
机构
[1] Department of Information and Communication Systems Engineering, School of Sciences, University of the Aegean
[2] Department of Mathematics, National and Capodistrian University of Athens, Panepistimioupolis, Ilisia, Athens
[3] School of Mathematical and Statistical Sciences, Howard College Campus, University of KwaZulu-Natal
基金
新加坡国家研究基金会;
关键词
D O I
10.2991/jnmp.2005.12.s1.3
中图分类号
学科分类号
摘要
We investigate the algebraic properties of the time-dependent Schrödinger equations of certain nonlinear oscillators introduced by Calogero and Graffi (Calogero F & Graffi S, On the quantisation of a nonlinear Hamiltonian oscillator Physics Letters A 313 (2003) 356-362; Calogero F, On the quantisation of two other nonlinear harmonic oscillators Physics Letters A 319 (2003) 240-245; Calogero F, On the quantisation of yet another two nonlinear harmonic oscillators Journal of Nonlinear Mathematical Physics 11 (2004) 1-6). Although all of the corresponding classical Hamiltonians are characterised by the Lie algebra sl(2, R), we find that the algebras in the quantal case are not unique and depend upon the choice of parameters made in the quantisation process.
引用
收藏
页码:32 / 42
页数:10
相关论文
共 14 条
[1]  
Calogero F., Graffi S., On the quantisation of a nonlinear Hamiltonian oscillator, Physics Letters A, 313, pp. 356-362, (2003)
[2]  
Calogero F., On the quantisation of two other nonlinear harmonic oscillators, Physics Letters A, 319, pp. 240-245, (2003)
[3]  
Calogero F., On the quantisation of yet another two nonlinear harmonic oscillators, Journal of Nonlinear Mathematical Physics, 11, pp. 1-6, (2004)
[4]  
Ermakov V., Second order differential equations. Conditions of complete integrability, Universita Izvestia Kiev Series III, 9, pp. 1-25, (1880)
[5]  
Head A., LIE, a PC program for Lie analysis of differential equations, Computer Physics Communications, 77, pp. 241-248, (1993)
[6]  
Lemmer R.L., Leach P.G.L., A classical viewpoint on quantum chaos, Arab Journal of Mathematical Sciences, 5, pp. 1-17, (1999)
[7]  
Mubarakzyanov G.M., On solvable Lie algebras, Izvestia Vysshikh Uchebn Zavendeniǐ Matematika, 32, pp. 114-123, (1963)
[8]  
Mubarakzyanov G.M., Classification of real structures of five-dimensional Lie algebras, Izvestia Vysshikh Uchebn Zavendeniǐ Matematika, 34, pp. 99-106, (1963)
[9]  
Mubarakzyanov G.M., Classification of solvable six-dimensional Lie algebras with one nilpotent base element, Izvestia Vysshikh Uchebn Zavendeniǐ Matematika, 35, pp. 104-116, (1963)
[10]  
Nucci M.C., Interactive REDUCE Programs for Calcuating Classical, Non-classical and Lie-Bäcklund Symmetries for Differential Equations, (1990)