The Uniform Convergence of Fourier Series in a System of Polynomials Orthogonal in the Sense of Sobolev and Associated to Jacobi Polynomials

被引:0
作者
M. G. Magomed-Kasumov
机构
[1] Daghestan Federal Research Center,
[2] Vladikavkaz Scientific Center,undefined
来源
Siberian Mathematical Journal | 2023年 / 64卷
关键词
Sobolev inner product; Jacobi polynomials; Fourier series; uniform convergence; Sobolev space; Muckenhoupt conditions; 517;
D O I
暂无
中图分类号
学科分类号
摘要
We establish that the Fourier series in the Sobolev system of polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{P}}_{r}^{\alpha,\beta} $\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ -1<\alpha,\beta\leq 0 $\end{document}, associated to the Jacobi polynomials converge uniformly on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ [-1,1] $\end{document} to functions in the Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ W^{r}_{L^{1}_{\rho(\alpha,\beta)}} $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho(\alpha,\beta) $\end{document} is the Jacobi weight. We show also that the Fourier series converges in the norm of the Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ W^{r}_{L^{p}_{\rho(A,B)}} $\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p>1 $\end{document} under the Muckenhoupt conditions.
引用
收藏
页码:338 / 346
页数:8
相关论文
共 38 条
[1]  
Marcellan F(2015)On Sobolev orthogonal polynomials Exp. Math. 33 308-352
[2]  
Xu Y(2013)On the Pollard decomposition method applied to some Jacobi–Sobolev expansions Turkish J. Math. 37 934-948
[3]  
Marcellan F(2019)Fourier series of Jacobi–Sobolev polynomials Integral Transforms Spec. Funct. 30 334-346
[4]  
Quintana Y(2021)Fourier series for coherent pairs of Jacobi measures Integral Transforms Spec. Funct. 32 437-457
[5]  
Urieles A(2010)Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer–Sobolev inner product J. Approx. Theory 162 397-406
[6]  
Ciaurri O(2013)Jacobi–Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality J. Approx. Theory 170 78-93
[7]  
Minguez J(1991)On polynomials orthogonal with respect to certain Sobolev inner product J. Approx. Theory 65 151-175
[8]  
Ciaurri O(2002)On Fourier series of a discrete Jacobi–Sobolev inner product J. Approx. Theory 117 1-22
[9]  
Minguez J(2003)Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product J. Approx. Theory 121 336-356
[10]  
Fejzullahu BX(2012)Convergence and summability of Fourier–Sobolev series Vestnik MGSU 5 34-39