Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroids and Gauge Theory

被引:0
作者
Anton M. Zeitlin
机构
[1] Yale University,Department of Mathematics
来源
Communications in Mathematical Physics | 2011年 / 303卷
关键词
Gauge Theory; Conformal Weight; Vertex Algebra; Ghost Number; Double Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quasiclassical limit of the Lian-Zuckerman homotopy BV algebra (quasiclassical LZ algebra) on the subcomplex, corresponding to “light modes”, i.e. the elements of zero conformal weight, of the semi-infinite (BRST) cohomology complex of the Virasoro algebra associated with vertex operator algebra (VOA) with a formal parameter. We also construct a certain deformation of the BRST differential parametrized by a constant two-component tensor, such that it leads to the deformation of the A∞-subalgebra of the quasiclassical LZ algebra. Altogether this gives a functor the category of VOA with a formal parameter to the category of A∞-algebras. The associated generalized Maurer-Cartan equation gives the analogue of the Yang-Mills equation for a wide class of VOAs. Applying this construction to an example of VOA generated by β - γ systems, we find a remarkable relation between the Courant algebroid and the homotopy algebra of the Yang-Mills theory.
引用
收藏
页码:331 / 359
页数:28
相关论文
共 64 条
[1]  
Banks T.(1986)Dilaton coupling and BRST quantization of bosonic strings Nucl. Phys. B277 67-86
[2]  
Nemeshansky D.(1998)Frobenius manifolds and formality of Lie algebras of polyvector fields IMRN 4 201-215
[3]  
Sen A.(2003)Yang-Mills Action from Open Superstring Field Theory JHEP 0309 022-1163
[4]  
Barannikov S.(2007)The first Pontryagin class Compositio Math. 143 1127-609
[5]  
Kontsevich M.(1985)Abelian and Nonabelian Vector Field Effective Actions from String Field Theory Nucl. Phys. B262 593-90
[6]  
Berkovits N.(1986)Quantum String Theory Effective Action Nucl. Phys. B278 78-27
[7]  
Schnabl M.(2003)Non-linear electrodynamics from quantized strings JHEP 0309 050-130
[8]  
Bressler P.(1985)Semi-infinite cohomology and string theory Nucl. Phys. B261 1-8446
[9]  
Callan C.G.(1985)Gerbes of chiral differential operators. II Phys. Lett. B163 123-680
[10]  
Friedan D.(1986)Semi-infinite forms and topological vertex operator algebras Proc. Nat. Acad. Sci. 83 8442-241