共 50 条
On trees with unique locating kernels
被引:0
|作者:
Dorota Bród
机构:
[1] Rzeszow University of Technology,The Faculty of Mathematics and Applied Physics
来源:
Boletín de la Sociedad Matemática Mexicana
|
2021年
/
27卷
关键词:
Location-domination in graphs;
Independence;
Locating kernels;
Characterization of structure;
Tree;
11B37;
05C69;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A locating-dominating set of a graph G is a set D of vertices such that for every two vertices x,y∈V(G)\D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x,y\in V(G)\setminus D$$\end{document} the sets N(x)∩D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N(x)\cap D$$\end{document} and N(y)∩D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N(y)\cap D$$\end{document} are non-empty and different. In this paper, we define the locating kernel of a graph G, i.e., a subset of its vertex set which is independent and a locating-dominating set. We provide a constructive characterization of trees with a unique locating kernel.
引用
收藏
相关论文