On trees with unique locating kernels

被引:0
|
作者
Dorota Bród
机构
[1] Rzeszow University of Technology,The Faculty of Mathematics and Applied Physics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Location-domination in graphs; Independence; Locating kernels; Characterization of structure; Tree; 11B37; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A locating-dominating set of a graph G is a set D of vertices such that for every two vertices x,y∈V(G)\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in V(G)\setminus D$$\end{document} the sets N(x)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(x)\cap D$$\end{document} and N(y)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(y)\cap D$$\end{document} are non-empty and different. In this paper, we define the locating kernel of a graph G, i.e., a subset of its vertex set which is independent and a locating-dominating set. We provide a constructive characterization of trees with a unique locating kernel.
引用
收藏
相关论文
共 50 条
  • [41] ARANKINGS OF TREES
    Pillone, D.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 415 - 437
  • [42] Bounds on trees
    Sokic, Miodrag
    DISCRETE MATHEMATICS, 2011, 311 (06) : 398 - 407
  • [43] On the Aα-spectra of trees
    Nikiforov, Vladimir
    Pasten, Germain
    Rojo, Oscar
    Soto, Ricardo L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 286 - 305
  • [44] Trees in tournaments
    Havet, F
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 121 - 134
  • [45] STRUCTURAL THEORY OF TREES I. BRANCHING AND CONDENSATIONS OF TREES
    Goranko, Valentin
    Kellerman, Ruaan
    Zanardo, Alberto
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2023, 18 (02) : 188 - 209
  • [46] On σ-span and F-span of trees and full binary trees
    Li, Shuchao
    Wang, Hua
    Wang, Shujing
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1564 - 1576
  • [47] STRUCTURAL THEORY OF TREES II. COMPLETENESS AND COMPLETIONS OF TREES
    Kellerman, Ruaan
    Zanardo, Alberto
    Goranko, Valentin
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2023, 18 (02) : 210 - 233
  • [48] Parameterized Measure & Conquer for Problems with No Small Kernels
    Binkele-Raible, Daniel
    Fernau, Henning
    ALGORITHMICA, 2012, 64 (01) : 189 - 212
  • [49] The existence of regular conditional probabilities for Markov kernels
    Nogales, A. G.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (03) : 891 - 897
  • [50] Induced matching vs edge open packing: Trees and product graphs
    Bresar, Bostjan
    Dravec, Tanja
    Hedzet, Jaka
    Samadi, Babak
    DISCRETE MATHEMATICS, 2025, 348 (07)