On trees with unique locating kernels

被引:0
|
作者
Dorota Bród
机构
[1] Rzeszow University of Technology,The Faculty of Mathematics and Applied Physics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Location-domination in graphs; Independence; Locating kernels; Characterization of structure; Tree; 11B37; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A locating-dominating set of a graph G is a set D of vertices such that for every two vertices x,y∈V(G)\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in V(G)\setminus D$$\end{document} the sets N(x)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(x)\cap D$$\end{document} and N(y)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(y)\cap D$$\end{document} are non-empty and different. In this paper, we define the locating kernel of a graph G, i.e., a subset of its vertex set which is independent and a locating-dominating set. We provide a constructive characterization of trees with a unique locating kernel.
引用
收藏
相关论文
共 50 条
  • [31] Locating and repairing faults in a network with mobile agents
    Cooper, Colin
    Klasing, Ralf
    Radzik, Tomasz
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (14-15) : 1638 - 1647
  • [32] On Stronger Types of Locating-Dominating Codes
    Junnila, Mlle
    Laihonen, Tero
    Lehtila, Tuomo
    Luz Puertas, Maria
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [33] Locating Median Paths on Connected Outerplanar Graphs
    Lari, Isabella
    Ricca, Federica
    Scozzari, Andrea
    Becker, Ronald I.
    NETWORKS, 2011, 57 (03) : 294 - 307
  • [34] Stars on trees
    Borg, Peter
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1046 - 1049
  • [35] Splitting trees
    Hansen, P
    Hertz, A
    Quinodoz, N
    DISCRETE MATHEMATICS, 1997, 165 : 403 - 419
  • [36] Cavitation in trees
    Cochard, Herve
    COMPTES RENDUS PHYSIQUE, 2006, 7 (9-10) : 1018 - 1026
  • [37] On subtrees of trees
    Székely, LA
    Wang, H
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (01) : 138 - 155
  • [38] Conservative trees
    Licona, Miguel
    Tey, Joaquin
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [39] Maximal trees
    Brendle, Jorg
    ARCHIVE FOR MATHEMATICAL LOGIC, 2018, 57 (3-4) : 421 - 428
  • [40] Maximal trees
    Jörg Brendle
    Archive for Mathematical Logic, 2018, 57 : 421 - 428