On trees with unique locating kernels

被引:0
|
作者
Dorota Bród
机构
[1] Rzeszow University of Technology,The Faculty of Mathematics and Applied Physics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Location-domination in graphs; Independence; Locating kernels; Characterization of structure; Tree; 11B37; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A locating-dominating set of a graph G is a set D of vertices such that for every two vertices x,y∈V(G)\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in V(G)\setminus D$$\end{document} the sets N(x)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(x)\cap D$$\end{document} and N(y)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(y)\cap D$$\end{document} are non-empty and different. In this paper, we define the locating kernel of a graph G, i.e., a subset of its vertex set which is independent and a locating-dominating set. We provide a constructive characterization of trees with a unique locating kernel.
引用
收藏
相关论文
共 50 条
  • [21] Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees
    Kigami, Jun
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2674 - 2730
  • [22] BIDIMENSIONALITY AND KERNELS
    Fomin, Fedor, V
    Lokshtanov, Daniel
    Saurabh, Saket
    Thilikos, Dimitrios M.
    SIAM JOURNAL ON COMPUTING, 2020, 49 (06) : 1397 - 1422
  • [23] The Matsumoto-Yor property on trees
    Massam, H
    Wesolowski, J
    BERNOULLI, 2004, 10 (04) : 685 - 700
  • [24] Trees with maximum number of maximal matchings
    Gorska, Joanna
    Skupien, Zdzislaw
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1367 - 1377
  • [25] LEXICOGRAPHIC GENERATION OF ROOTED TREES AND TREES
    刘家壮
    A Monthly Journal of Science, 1983, (04) : 448 - 451
  • [26] On k-independence in graphs with emphasis on trees
    Blidia, Mostafa
    Chellali, Mustapha
    Favaron, Odile
    Meddah, Nacera
    DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2209 - 2216
  • [27] Finite Sholander trees, trees, and their betweenness
    Chvatal, Vasek
    Rautenbach, Dieter
    Schaefer, Philipp Matthias
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2143 - 2147
  • [28] ON SIMPLY STRUCTURED BASES OF TREE KERNELS
    Sander, J.
    Sander, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2005, 2 (01) : 45 - 56
  • [29] Alignment Kernels Based on a Generalization of Alignments
    Shin, Kilho
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (01): : 1 - 10
  • [30] A bijection between ordered trees and bicoloured ordered trees
    Liu, Chunlin
    Wang, Zhenghua
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1417 - 1421