On trees with unique locating kernels

被引:0
|
作者
Dorota Bród
机构
[1] Rzeszow University of Technology,The Faculty of Mathematics and Applied Physics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Location-domination in graphs; Independence; Locating kernels; Characterization of structure; Tree; 11B37; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A locating-dominating set of a graph G is a set D of vertices such that for every two vertices x,y∈V(G)\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in V(G)\setminus D$$\end{document} the sets N(x)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(x)\cap D$$\end{document} and N(y)∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(y)\cap D$$\end{document} are non-empty and different. In this paper, we define the locating kernel of a graph G, i.e., a subset of its vertex set which is independent and a locating-dominating set. We provide a constructive characterization of trees with a unique locating kernel.
引用
收藏
相关论文
共 50 条
  • [1] On trees with unique locating kernels
    Brod, Dorota
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [2] On the locating chromatic number of trees
    Hafidh, Yusuf
    Baskoro, Edy Tri
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01) : 377 - 394
  • [3] A BOUND FOR THE LOCATING CHROMATIC NUMBER OF TREES
    Behtoei, Ali
    Anbarloei, Mahdi
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 31 - 41
  • [4] Upper bounds on the locating chromatic number of trees
    Furuya, Michitaka
    Matsumoto, Naoki
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 338 - 341
  • [5] Trees with Certain Locating-Chromatic Number
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2016, 48 (01) : 39 - 47
  • [6] BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 49 - 62
  • [7] Weakly status injective trees are status unique in trees
    Shang, Jen-Ling
    Shyu, Tay-Woei
    Lin, Chiang
    ARS COMBINATORIA, 2018, 139 : 133 - 143
  • [8] Spiders are status unique in trees
    Shang, Jen-Ling
    Lin, Chiang
    DISCRETE MATHEMATICS, 2011, 311 (10-11) : 785 - 791
  • [9] BOUNDS ON THE LOCATING-TOTAL DOMINATION NUMBER IN TREES
    Wang, Kun
    Ning, Wenjie
    Lu, Mei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 25 - 34
  • [10] Improved algorithm for the locating-chromatic number of trees
    Baskoro, Edy Tri
    Primaskun, Devi Imulia Dian
    THEORETICAL COMPUTER SCIENCE, 2021, 856 : 165 - 168