Two-parameter Quantum Affine Algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{r,s}(\widehat{\mathfrak {sl}_n})$$\end{document}, Drinfel’d Realization and Quantum Affine Lyndon Basis

被引:6
作者
Naihong Hu
Marc Rosso
Honglian Zhang
机构
[1] East China Normal University,Department of Mathematics
[2] Ecole Normale Superieure,Départment Mathématiques et Applications
[3] Shanghai University,Department of Mathematics
关键词
Hopf Algebra; Quantum Calculation; Quantum Group; Braid Group; Root Vector;
D O I
10.1007/s00220-007-0405-1
中图分类号
学科分类号
摘要
We further define two-parameter quantum affine algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{r,s}(\widehat{\mathfrak {sl}_n})$$\end{document} (n > 2) after the work on the finite cases (see [BW1,BGH1,HS,BH]), which turns out to be a Drinfel’d double. Of importance for the quantum affine cases is that we can work out the compatible two-parameter version of the Drinfel’d realization as a quantum affinization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{r,s}({\mathfrak{sl}}_n)$$\end{document} and establish the Drinfel’d Isomorphism Theorem in the two-parameter setting, via developing a new combinatorial approach (quantum calculation) to the quantum affine Lyndon basis we present (with an explicit valid algorithm based on the use of Drinfel’d generators).
引用
收藏
相关论文
共 30 条
  • [1] Beck J.(1994)Convex bases of PBW type for quantum affine algebras Commun. Math. Phys. 165 193-199
  • [2] Beck J.(1994)Braid group action and quantum affine algebras Commun. Math. Phys. 165 555-568
  • [3] Bergeron N.(2006)Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups J. Algebra 301 378-405
  • [4] Gao Y.(2004)Two-parameter quantum groups and Drinfel’d doubles Alg. Rep. Theory 7 261-286
  • [5] Hu N.(1993)A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of J. Algebra 161 291-310
  • [6] Benkart G.(1997)Generalization of Drinfel’d quantum affine algebras Lett. Math. Phys. 41 181-193
  • [7] Witherspoon S.(1997)Drinfel’d comultiplication and vertex operators J. Geom. Phys. 23 1-13
  • [8] Damiani I.(1988)A new realization of Yangians and quantized affine algebras Soviet Math. Dokl. 36 212-216
  • [9] Ding J.T.(1998)Vertex representations of quantum affine algebras Proc. Nat’l. Acad. Sci. USA. 85 9373-9377
  • [10] Iohara K.(2007)On quantum shuffle and quantum affine algebras J. Algebra 318 495-519