Automated detection and classification of shoulder arthroplasty models using deep learning

被引:0
作者
Paul H. Yi
Tae Kyung Kim
Jinchi Wei
Xinning Li
Gregory D. Hager
Haris I. Sair
Jan Fritz
机构
[1] Johns Hopkins University School of Medicine,The Russell H. Morgan Department of Radiology and Radiological Science
[2] Johns Hopkins University Whiting School of Engineering,Radiology Artificial Intelligence Lab (RAIL), Malone Center for Engineering in Healthcare
[3] Boston University School of Medicine,Department of Orthopaedic Surgery
[4] New York University Grossman School of Medicine,Department of Radiology, Division of Musculoskeletal Radiology
来源
Skeletal Radiology | 2020年 / 49卷
关键词
Shoulder arthroplasty; Deep learning; Artificial intelligence; Implant identification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1623 / 1632
页数:9
相关论文
共 99 条
[1]  
Roberts CC(2007)Radiologic assessment of reverse shoulder arthroplasty RadioGraphics 27 223-235
[2]  
Ekelund AL(2006)The reverse shoulder prosthesis: a review of imaging features and complications Skelet Radiol 35 488-496
[3]  
Renfree KJ(2019)Current peri-operative imaging concepts surrounding shoulder arthroplasty Skelet Radiol 48 1485-1497
[4]  
Liu PT(2020)Reverse total shoulder arthroplasty: an imaging overview Skelet Radiol 49 19-30
[5]  
Chew FS(2016)Shoulder arthroplasty, from indications to complications: what the radiologist needs to know RadioGraphics 36 192-208
[6]  
McFarland EG(2014)Revision total hip and knee arthroplasty implant identification: implications for use of Unique Device Identification 2012 AAHKS member survey results J Arthroplast 29 251-255
[7]  
Sanguanjit P(2019)Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning Pediatr Radiol 49 1066-1070
[8]  
Tasaki A(2017)Artificial intelligence for analyzing orthopedic trauma radiographs Acta Orthop 88 581-586
[9]  
Keyurapan E(2018)Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks Clin Radiol 73 439-445
[10]  
Fishman EK(2018)Deep neural network improves fracture detection by clinicians Proc Natl Acad Sci 115 11591-11596