Primal-Dual Monotone Kernel Regression

被引:0
作者
K. Pelckmans
M. Espinoza
J. De Brabanter
J. A. K. Suykens
B. De Moor
机构
[1] ESAT-SCD-SISTA,K.U. Leuven
[2] Hogeschool KaHo Sint-Lieven (Associatie KULeuven),Departement Industrieel Ingenieur
来源
Neural Processing Letters | 2005年 / 22卷
关键词
constraints; convex optimization; monotone regression; primal-dual kernel regression; support vector machines;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the estimation of monotone nonlinear regression functions based on Support Vector Machines (SVMs), Least Squares SVMs (LS-SVMs) and other kernel machines. It illustrates how to employ the primal-dual optimization framework characterizing LS-SVMs in order to derive a globally optimal one-stage estimator for monotone regression. As a practical application, this letter considers the smooth estimation of the cumulative distribution functions (cdf), which leads to a kernel regressor that incorporates a Kolmogorov–Smirnoff discrepancy measure, a Tikhonov based regularization scheme and a monotonicity constraint.
引用
收藏
页码:171 / 182
页数:11
相关论文
共 9 条
  • [1] Mammen E.(2001)A general projection framework for constrained smoothing Statistical Science 16 232-248
  • [2] Marron J. S.(1991)Monotone regression splines for smoothed bootstrapping. Computational Statistics Quarterly 6 85-97
  • [3] Turlach B. A.(1977)Piecewise monotone interpolation J. Approximation Theory 21 411-416
  • [4] Wand M. P.(1988)Monotone regression splines in action Statistical Science 3 425-461
  • [5] Gaylord D. E.(undefined)undefined undefined undefined undefined-undefined
  • [6] Ramirez C. K.(undefined)undefined undefined undefined undefined-undefined
  • [7] De Boor C.(undefined)undefined undefined undefined undefined-undefined
  • [8] Schwartz B.(undefined)undefined undefined undefined undefined-undefined
  • [9] Ramsay J.O.(undefined)undefined undefined undefined undefined-undefined