Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements

被引:0
|
作者
Jun Hu
Limin Ma
Rui Ma
机构
[1] Peking University,LMAM and School of Mathematical Sciences
[2] Pennsylvania State University,Department of Mathematics
[3] University Park,Institut für Mathematik
[4] Humboldt-Universität zu Berlin,undefined
来源
关键词
Superconvergence; Crouzeix-Raviart element; Morley element; Raviart–Thomas element; Hellan–Herrmann–Johnson element; 65N30; 73C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element, respectively. This in particular allows for proving a full one-order superconvergence result for these two mixed finite elements. Finally, a full one-order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively. Those superconvergence results are also extended to mildly structured meshes.
引用
收藏
相关论文
共 50 条
  • [41] The Crouzeix-Raviart Fe on nonmatching grids with an approximate mortar condition
    Rahman, Talal
    Bjorstad, Petter
    Xu, Xuejun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (01) : 496 - 516
  • [42] Stabilized Crouzeix-Raviart element for Darcy-Forchheimer model
    Wang, Yan
    Rui, Hongxing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1568 - 1588
  • [43] On an additive Schwarz preconditioner for the Crouzeix-Raviart mortar finite element
    Rahman, T
    Xu, XJ
    Hoppe, RHW
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 335 - 342
  • [44] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Min-fu Feng
    Rui-sheng Qi
    Rui Zhu
    Bing-tao Ju
    Applied Mathematics and Mechanics, 2010, 31 : 393 - 404
  • [45] A 3D Crouzeix-Raviart mortar finite element
    Marcinkowski, Leszek
    Rahman, Talal
    Valdman, Jan
    COMPUTING, 2009, 86 (04) : 313 - 330
  • [46] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    冯民富
    祁瑞生
    朱瑞
    鞠炳焘
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (03) : 393 - 404
  • [47] EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS
    Carstensen, Carsten
    Gedicke, Joscha
    Rim, Donsub
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) : 337 - 353
  • [48] MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems
    Claude LE BRIS
    Frédéric LEGOLL
    Alexei LOZINSKI
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (01) : 113 - 138
  • [49] Crouzeix-Raviart Finite Element Approximation for the Parabolic Obstacle Problem
    Gudi, Thirupathi
    Majumder, Papri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 273 - 292
  • [50] Robust AMLI methods for parabolic Crouzeix-Raviart FEM systems
    Boyanova, Petia
    Margenov, Svetozar
    Neytcheva, Maya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (02) : 380 - 390