Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements

被引:0
|
作者
Jun Hu
Limin Ma
Rui Ma
机构
[1] Peking University,LMAM and School of Mathematical Sciences
[2] Pennsylvania State University,Department of Mathematics
[3] University Park,Institut für Mathematik
[4] Humboldt-Universität zu Berlin,undefined
来源
关键词
Superconvergence; Crouzeix-Raviart element; Morley element; Raviart–Thomas element; Hellan–Herrmann–Johnson element; 65N30; 73C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element, respectively. This in particular allows for proving a full one-order superconvergence result for these two mixed finite elements. Finally, a full one-order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively. Those superconvergence results are also extended to mildly structured meshes.
引用
收藏
相关论文
共 50 条
  • [31] ON THE INF-SUP STABILITY OF CROUZEIX-RAVIART STOKES ELEMENTS IN 3D
    Sauter, Stefan
    Torres, Celine
    MATHEMATICS OF COMPUTATION, 2023, 92 (341) : 1033 - 1059
  • [32] ADAPTIVE NONCONFORMING CROUZEIX-RAVIART FEM FOR EIGENVALUE PROBLEMS
    Carstensen, Carsten
    Gallistl, Dietmar
    Schedensack, Mira
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1061 - 1087
  • [33] Crouzeix-Raviart Approximation of the Total Variation on Simplicial Meshes
    Chambolle, Antonin
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 872 - 899
  • [34] A general quadratic enrichment of the Crouzeix-Raviart finite element
    Nudo, Federico
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [35] Crouzeix–Raviart boundary elements
    Norbert Heuer
    Francisco-Javier Sayas
    Numerische Mathematik, 2009, 112 : 381 - 401
  • [36] Orthogonality relations of Crouzeix-Raviart and Raviart-Thomas finite element spaces
    Bartels, Soren
    Wang, Zhangxian
    NUMERISCHE MATHEMATIK, 2021, 148 (01) : 127 - 139
  • [37] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Feng, Min-fu
    Qi, Rui-sheng
    Zhu, Rui
    Ju, Bing-tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) : 393 - 404
  • [38] A trace result for nonconforming Crouzeix-Raviart finite elements, application to the discretization of Darcy's equations
    Bernardi, Christine
    Girault, Vivette
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (04) : 271 - 276
  • [39] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330
  • [40] MsFEM A la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems
    Le Bris, Claude
    Legoll, Frederic
    Lozinski, Alexei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (01) : 113 - 138