Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements

被引:0
|
作者
Jun Hu
Limin Ma
Rui Ma
机构
[1] Peking University,LMAM and School of Mathematical Sciences
[2] Pennsylvania State University,Department of Mathematics
[3] University Park,Institut für Mathematik
[4] Humboldt-Universität zu Berlin,undefined
来源
关键词
Superconvergence; Crouzeix-Raviart element; Morley element; Raviart–Thomas element; Hellan–Herrmann–Johnson element; 65N30; 73C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element, respectively. This in particular allows for proving a full one-order superconvergence result for these two mixed finite elements. Finally, a full one-order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively. Those superconvergence results are also extended to mildly structured meshes.
引用
收藏
相关论文
共 50 条
  • [21] Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods
    Kobayashi, Kenta
    Tsuchiya, Takuya
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1191 - 1211
  • [22] Supercloseness and Asymptotic Analysis of the Crouzeix–Raviart and Enriched Crouzeix–Raviart Elements for the Stokes Problem
    Wei Chen
    Hao Han
    Limin Ma
    Journal of Scientific Computing, 2025, 103 (2)
  • [23] On the multilevel preconditioning of Crouzeix-Raviart elliptic problems
    Kraus, J.
    Margenov, S.
    Synka, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (05) : 395 - 416
  • [24] Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity
    Hansbo, P
    Larson, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01): : 63 - 72
  • [25] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [26] A posteriori error analysis using the constitutive law for the Crouzeix-Raviart element
    Achchab, B.
    Majdoubi, A.
    Meskine, D.
    Souissi, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (08) : 1309 - 1314
  • [27] Error analysis for a Crouzeix-Raviart approximation of the p-Dirichlet problem
    Kaltenbach, Alex
    JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (02) : 111 - 138
  • [28] Error analysis for a Crouzeix-Raviart approximation of the variable exponent Dirichlet problem
    Balci, Anna Kh
    Kaltenbach, Alex
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [29] The Enriched Crouzeix–Raviart Elements are Equivalent to the Raviart–Thomas Elements
    Jun Hu
    Rui Ma
    Journal of Scientific Computing, 2015, 63 : 410 - 425
  • [30] Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems
    Kreuzer, Christian
    Schedensack, Mira
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 593 - 617