Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements

被引:0
|
作者
Jun Hu
Limin Ma
Rui Ma
机构
[1] Peking University,LMAM and School of Mathematical Sciences
[2] Pennsylvania State University,Department of Mathematics
[3] University Park,Institut für Mathematik
[4] Humboldt-Universität zu Berlin,undefined
来源
关键词
Superconvergence; Crouzeix-Raviart element; Morley element; Raviart–Thomas element; Hellan–Herrmann–Johnson element; 65N30; 73C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element, respectively. This in particular allows for proving a full one-order superconvergence result for these two mixed finite elements. Finally, a full one-order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively. Those superconvergence results are also extended to mildly structured meshes.
引用
收藏
相关论文
共 50 条
  • [1] Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements
    Hu, Jun
    Ma, Limin
    Ma, Rui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [2] Superconvergence of both the Crouzeix-Raviart and Morley elements
    Hu, Jun
    Ma, Rui
    NUMERISCHE MATHEMATIK, 2016, 132 (03) : 491 - 509
  • [3] Superconvergence of the Crouzeix-Raviart element for elliptic equation
    Zhang, Yidan
    Huang, Yunqing
    Yi, Nianyu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2833 - 2844
  • [4] Superconvergence of the Crouzeix-Raviart element for elliptic equation
    Yidan Zhang
    Yunqing Huang
    Nianyu Yi
    Advances in Computational Mathematics, 2019, 45 : 2833 - 2844
  • [5] ASYMPTOTIC EXPANSIONS OF EIGENVALUES BY BOTH THE CROUZEIX-RAVIART AND ENRICHED CROUZEIX-RAVIART ELEMENTS
    Hu, Jun
    Ma, Limin
    MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 75 - 109
  • [6] Crouzeix-Raviart boundary elements
    Heuer, Norbert
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 381 - 401
  • [7] Convergence of Adaptive Crouzeix-Raviart and Morley FEM for Distributed Optimal Control Problems
    Dond, Asha K.
    Nataraj, Neela
    Nayak, Subham
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (03) : 599 - 622
  • [8] The Enriched Crouzeix-Raviart Elements are Equivalent to the Raviart-Thomas Elements
    Hu, Jun
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (02) : 410 - 425
  • [9] Crouzeix-Raviart type finite elements on anisotropic meshes
    Apel, T
    Nicaise, S
    Schöberl, J
    NUMERISCHE MATHEMATIK, 2001, 89 (02) : 193 - 223
  • [10] Crouzeix-Raviart type finite elements on anisotropic meshes
    Thomas Apel
    Serge Nicaise
    Joachim Schöberl
    Numerische Mathematik, 2001, 89 : 193 - 223