Martin Boundary of a Fine Domain and a Fatou-Naïm-Doob Theorem for Finely Superharmonic Functions

被引:0
作者
Mohamed El Kadiri
Bent Fuglede
机构
[1] Université Mohammed V,Département de Mathématiques, Faculté des Sciences
[2] Universitetsparken 5,Department of Mathematical Sciences
来源
Potential Analysis | 2016年 / 44卷
关键词
Martin boundary; Integral representation; Riesz-Martin kernel; Finely superharmonic function; Finely harmonic function; 31D05; 31C35; 31C40;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the Martin compactification U¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline U$\end{document} of a fine domain U in Rn (n = 2) and the Riesz-Martin kernel K on U×U¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U\times \overline U$\end{document}. We obtain the integral representation of finely superharmonic fonctions ≥ 0 on U in terms of K and establish the Fatou-Naim-Doob theorem in this setting.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 20 条
  • [1] Beznea L(2005)On the tightness of capacities associated with sub-Markovian resolvents Bull. London Math. Soc 37 899-907
  • [2] Boboc N(1985)Natural localization and natural sheaf property in standard H-cones of functions, I Rev. Roumaine Math. Pures Appl. 30 1-21
  • [3] Boboc N(1966)Applications to analysis of a topological definition of smallness of a set Bull. Amer. Math. Soc 72 579-600
  • [4] Bucur Gh(2000)Sur la décomposition de Riesz et la représentation intégrale des fonctions finement surharmoniques Positivity 4 105-114
  • [5] Doob JL(1974)Remarks on fine continuity and the base operation in potential theory Math. Ann. 210 207-212
  • [6] El Kadiri M(1975)Sur la fonction de Green pour un domaine fin Ann. Inst. Fourier 25 201-206
  • [7] Fuglede B(1976)Finely harmonic mappings and finely holomorphic functions Ann. Acad. Sci. Fennicae, Ser. A.I. 10 113-127
  • [8] Fuglede B(1982)Localization in fine potential theory and uniform approximation by subharmonic functions J. Funct. Anal 49 52-72
  • [9] Fuglede B(1983)Integral representation of fine potentials Math. Ann 262 191-214
  • [10] Fuglede B(1985)Représentation intégrale des potentiels fins C.R. Acad. Sc. Paris 300 129-132