Copositive approximation by rational functions with prescribed numerator degree

被引:0
作者
Dan-sheng Yu
Song-ping Zhou
机构
[1] Hangzhou Normal University,Department of Mathematics
[2] St. Francis Xaiver University,Department of Mathematics, Statistic and Computer Science
[3] Zhejiang Sci-Tech University,Institute of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2009年 / 24卷
关键词
copositive approximation; rational functions; approximation rate; 41A20; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
The paper proves that, if f(x) ∈ L[−1,1]p, 1 ≤ p < ∞, changes sign l times in (−1, 1), then there exists a real rational function r(x) ∈ Rn(2μ−1)l which is copositive with f(x), such that the following Jackson type estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\| {f - r} \right\|_p \leqslant C_\delta l^{2\mu } \omega _\rho \left( {f,\frac{1} {n}} \right)_p $$\end{document} holds, where μ is a natural number ≥ 3/2 + 1/p, and Cδ is a positive constant depending only on δ.
引用
收藏
页码:411 / 416
页数:5
相关论文
共 17 条
[1]  
Devore R. A.(1990) approximation by reciprocals of trigonometric and algebraic polynomials Canad Math Bull 33 460-469
[2]  
Leviatan D.(1996)On positive and copositive polynomial and spline approximation in J Approx Theory 86 320-334
[3]  
Yu X. M.(1989), 0 < J Approx Theory 57 322-331
[4]  
Hu Y. K.(1994) < ∞ Canad J Math 46 619-633
[5]  
Kopotun K.(1988)On approximation in the SIAM J Math Anal 19 233-245
[6]  
Yu X. M.(2004)-norm by reciprocals of polynomials Acta math Hungar 102 321-336
[7]  
Leviatan D.(2006)Degree of approximation by rational functions with prescribed numerator degree Acta Math Hungar 111 221-236
[8]  
Levin A. L.(undefined)Degree of approximation of real functions by reciprocals of real and complex polynomials undefined undefined undefined-undefined
[9]  
Saff E. B.(undefined)Approximation by reciprocals of polynomials in undefined undefined undefined-undefined
[10]  
Leviatan D.(undefined)(1 < undefined undefined undefined-undefined