Existence Results for Critical Semi-linear Equations on Heisenberg Group Domains

被引:0
作者
Najoua Gamara
Habiba Guemri
Amine Amri
机构
[1] Campus universitaire,
[2] Institut d’informatique de Medenine,undefined
[3] Institut d’informatique de Gabes,undefined
来源
Mediterranean Journal of Mathematics | 2012年 / 9卷
关键词
35H05; 35B05; 53C21; 53C25; 58J60; 58J70; Green’s function; characteristic point; exterior ball property; harmonic function and maximum principle;
D O I
暂无
中图分类号
学科分类号
摘要
Following the work of G. Citti and F. Uguzzoni who studied Yamabe type problems on Heisenberg group domains, we consider here the following critical semi-linear equation on domains of the Heisenberg group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{H}^1}}$$\end{document}:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P) \left\{\begin{array}{lll}-{\Delta_{H}}u\quad =\quad K{u^{3}}\quad\,{\rm in}\,\,\Omega,\\ \quad\quad\,{u}\quad > \quad0\qquad\,\,\,\,{\rm in}\,\,\Omega,\\ \quad\quad\,{u}\quad = \quad 0 \quad\quad\,\,\,{\rm on}\,\partial \Omega, \end{array}\right. $$\end{document}where ΔH is the sublaplacian on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{H}^1}}$$\end{document} and K is a C3 positive function defined on Ω. Using a version of the Morse Lemma at infinity, we give necessary conditions on K to insure the existence of solutions for (P).
引用
收藏
页码:803 / 831
页数:28
相关论文
共 44 条
[1]  
Bahri A.(1996)An invariant for Yamabe-type flows with applications to the scalarcurvature problems in high dimention Duke Math. J 281 323-466
[2]  
Bahri A.(1988)On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology on the domain Comm. Pure Appl. Math 41 253-294
[3]  
Coron J.M.(2004)On a variational problem involving critical sobolev growth in dimention four Adv. Differential Equations, volume 9 415-446
[4]  
Ben Ayed M.(1996)On the prescribed scalar curvature problem on 4-manifolds, Duke Math J 84 633-667
[5]  
Hammami M.(1995)Positive solutions for a semilinear equation on the Heisenberg group Boll. Un. Mat. Ital 7 883-900
[6]  
Ben Ayed M.(1998)Idefinite semi-linear equations on the Heisenberg group: a priori bounds and existance Comm. Partial Differential Equations 23 1123-1157
[7]  
Chen Y.(1995)A semi-linear problem for the Heisenberg Laplacian Rend. Sem. Mat. Univ. Padova 94 137-153
[8]  
Chtioui H.(1999)Nonlinear Liouville theorems in the Heisenberg group via the moving plane method Comm. Partial Differential Equations 24 1875-1890
[9]  
Hammami M.(1998)Positive solutions of Yamabe-type equations on the Heisenberg group Duke Math. J 91 241-296
[10]  
Biagini S.(1997)On the Liouville property for sublaplacians Ann. Sc. Norm. Super. Pisa Cl. Sci 4 239-256