The facets of the spanning trees polytope

被引:0
|
作者
Brahim Chaourar
机构
[1] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Mathematics and Statistics
来源
Mathematical Methods of Operations Research | 2022年 / 96卷
关键词
Spanning trees; Polytope; Facets; Matroid; Bases polytope; Locked subgraphs;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:113 / 121
页数:8
相关论文
共 50 条
  • [31] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [32] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [33] ON INDEPENDENT SPANNING-TREES
    KHULLER, S
    SCHIEBER, B
    INFORMATION PROCESSING LETTERS, 1992, 42 (06) : 321 - 323
  • [34] The number of spanning trees in a superprism
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS LETTERS, 2024, 13 : 66 - 73
  • [35] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    Journal of Inequalities and Applications, 2013
  • [36] Ramsey Spanning Trees and Their Applications
    Abraham, Ittai
    Chechik, Shiri
    Elkin, Michael
    Filtser, Arnold
    Neiman, Ofer
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [37] On spanning trees with restricted degrees
    Kaneko, A
    Yoshimoto, K
    INFORMATION PROCESSING LETTERS, 2000, 73 (5-6) : 163 - 165
  • [38] The Problem of Predecessors on Spanning Trees
    Poghosyan, V. S.
    Priezzhev, V. B.
    ACTA POLYTECHNICA, 2011, 51 (02) : 59 - 62
  • [39] Spanning trees and orientations of graphs
    Thomassen, Carsten
    JOURNAL OF COMBINATORICS, 2010, 1 (02) : 101 - 111
  • [40] The number of spanning trees of a graph
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 286 - 290