Theoretical Study of Electronic Structure and Stability of Mixed AlmBn−mHn2− and CmBn−mHn2−m (n = 6, 10, 12 and m = 1, 2) Clusters

被引:0
作者
Saida Ababsa
Foued Djamai
Bachir Zouchoune
机构
[1] Laboratoire de chimie appliquée et technologie des matériaux,Département d’anglais
[2] université Larbi Ben M’Hidi- Oum el Bouaghi,undefined
[3] Unité de recherche de chimie de l’environnement et moléculaire structurale,undefined
[4] université-Constantine 1,undefined
[5] Université d’Alger 2,undefined
来源
Journal of Cluster Science | 2014年 / 25卷
关键词
Density functional theory; Isomer stabilities; Bonding analysis; NBO analysis; Molecular structures;
D O I
暂无
中图分类号
学科分类号
摘要
Density functional theory (DFT) method with B3LYP functional and 6-311++G(d,p) basis set has been used to predict the geometries, relative stabilities, electronic structures and bonding analysis of Mixed AlmBn−mHn2− and CmBn−mHn2−m (n = 6, 10, 12 and m = 1, 2) clusters; being compared to the BnHn2− ones. Therefore, the DFT results suggest that the replacing of boron by aluminium or carbon is governed by Natural net charges following Gimar’s and Williams’s rules. The AlmBn−mHn2− structures are relatively distorted compared to those of BnHn2− and CmBn−mHn2−m. In AlmBn−mHn2− structures Al atoms prefer the adjacent sites, however for the C2Bn−2Hn cluster cages, the carbon atoms are positioned at diametrically opposed sites. The large HOMO–LUMO gaps show that the predicted clusters have chemical stabilities, principally, those of AlmBn−mHn2− ones, which are not experimentally isolated. The optimized geometries obtained through boron substitution by Al and C lead to compactness and to contracted structures, respectively, where B–B bonds are the shortest in mono- and di-carbaboranes.
引用
收藏
页码:1665 / 1686
页数:21
相关论文
共 155 条
  • [1] Lipscomb WN(1976)J Science. 196 1047-984
  • [2] Snedon LG(1991)Inorg Pure Appl. Chem. 63 407-undefined
  • [3] Mirabelli MG(1992)Collet. Czech Organometallics 11 2723-undefined
  • [4] Lynch AT(1991)Inorg Pure Appl. Chem. 63 327-undefined
  • [5] Fazen PJ(1993)undefined Angew. Chem. Int. Ed. Engl. 32 950-undefined
  • [6] Su K(1998)undefined Chem. Rev. 98 1515-undefined
  • [7] Beck JS(2002)undefined Coord. Chem. Rev. 232 173-undefined
  • [8] Getman TD(1971)undefined Inorg. Chem. 10 210-undefined
  • [9] Garrett PM(1986)undefined J. Am. Chem. Soc. 108 4303-undefined
  • [10] Knobler CB(1981)undefined J. Am. Chem. Soc. 103 1098-undefined