Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture

被引:0
|
作者
Yulong Shao
Qinglin Duan
Shasha Qiu
机构
[1] Dalian University of Technology,State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics
来源
Computational Mechanics | 2019年 / 64卷
关键词
Phase-field model; Meshfree; Adaptivity; Brittle fracture; Cracks; EFG;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient implementation of the element-free Galerkin (EFG) method for a phase-field model of linear elastic fracture mechanics is presented, in which the convenience of the meshfree method to construct high order approximation functions and to implement h-adaptivity is fully exploited. A second-order moving-least squares approximation for both displacement and phase field is employed. Domain integration of the weak forms is evaluated by the quadratically consistent 3-point integration scheme. The refinement criterion using maximum residual strain energy history is proposed and the insertion of nodes is based on the background mesh. Numerical results show that the developed method is more efficient than the standard finite element method (3-node triangle element) due to the proposed h-adaptivity. In comparison with the standard EFG method, the proposed consistent EFG method significantly improves the computational efficiency and accuracy. The advantage of the quadratic approximation is also demonstrated. In addition, the feasibility of extending the proposed method to 3D is validated by the modeling of a twisting crack.
引用
收藏
页码:741 / 767
页数:26
相关论文
共 50 条
  • [41] Phase-field modeling of brittle fracture using an efficient virtual element scheme
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Hussein, Ali
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 443 - 466
  • [42] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [43] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [44] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [45] Application of Adaptive Element-Free Galerkin Method to Simulate Friction Stir Welding of Aluminum
    Talebi, Hossein
    Froend, Martin
    Klusemann, Benjamin
    INTERNATIONAL CONFERENCE ON THE TECHNOLOGY OF PLASTICITY, ICTP 2017, 2017, 207 : 580 - 585
  • [46] A variationally consistent phase-field anisotropic damage model for fracture
    Wu, Jian-Ying
    Nguyen, Vinh Phu
    Zhou, Hao
    Huang, Yuli
    Computer Methods in Applied Mechanics and Engineering, 2020, 358
  • [47] Locking in the incompressible limit for the element-free Galerkin method
    Huerta, A
    Fernández-Méndez, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (11) : 1361 - 1383
  • [48] A FFT solver for variational phase-field modeling of brittle fracture
    Chen, Yang
    Vasiukov, Dmytro
    Gelebart, Lionel
    Park, Chung Hae
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 167 - 190
  • [49] A phase-field framework for brittle fracture in quasi-crystals
    Li, Peidong
    Li, Weidong
    Fan, Haidong
    Wang, Qingyuan
    Zhou, Kun
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 279
  • [50] Extension of the spatially adaptive phase-field model to various forms of fracture
    Phansalkar, Dhananjay
    Jadhav, Deepak B.
    Weinberg, Kerstin
    Ortiz, Michael
    Leyendecker, Sigrid
    FORCES IN MECHANICS, 2023, 10