Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture

被引:0
|
作者
Yulong Shao
Qinglin Duan
Shasha Qiu
机构
[1] Dalian University of Technology,State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics
来源
Computational Mechanics | 2019年 / 64卷
关键词
Phase-field model; Meshfree; Adaptivity; Brittle fracture; Cracks; EFG;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient implementation of the element-free Galerkin (EFG) method for a phase-field model of linear elastic fracture mechanics is presented, in which the convenience of the meshfree method to construct high order approximation functions and to implement h-adaptivity is fully exploited. A second-order moving-least squares approximation for both displacement and phase field is employed. Domain integration of the weak forms is evaluated by the quadratically consistent 3-point integration scheme. The refinement criterion using maximum residual strain energy history is proposed and the insertion of nodes is based on the background mesh. Numerical results show that the developed method is more efficient than the standard finite element method (3-node triangle element) due to the proposed h-adaptivity. In comparison with the standard EFG method, the proposed consistent EFG method significantly improves the computational efficiency and accuracy. The advantage of the quadratic approximation is also demonstrated. In addition, the feasibility of extending the proposed method to 3D is validated by the modeling of a twisting crack.
引用
收藏
页码:741 / 767
页数:26
相关论文
共 50 条
  • [31] Bounds for quantities of interest and adaptivity in the element-free Galerkin method
    Vidal, Yolanda
    Pares, Nuria
    Diez, Pedro
    Huerta, Antonio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (11) : 1782 - 1818
  • [32] A spatio-temporal adaptive phase-field fracture method
    Labanda, Nicols A.
    Espath, Luis
    Calo, Victor M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [33] Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale
    Xue Zhang
    Chet Vignes
    Scott W. Sloan
    Daichao Sheng
    Computational Mechanics, 2017, 59 : 737 - 752
  • [34] Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale
    Zhang, Xue
    Vignes, Chet
    Sloan, Scott W.
    Sheng, Daichao
    COMPUTATIONAL MECHANICS, 2017, 59 (05) : 737 - 752
  • [35] A finite-volume implementation of the phase-field model for brittle fracture with adaptive mesh refinement
    Yang, X. L.
    Guo, N.
    Yang, Z. X.
    COMPUTERS AND GEOTECHNICS, 2024, 165
  • [36] An adaptive multiscale phase field method for brittle fracture
    Patil, R. U.
    Mishra, B. K.
    Singh, I. V.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 254 - 288
  • [37] An extended element-free Galerkin method for thermo-mechanical dynamic fracture in linear and nonlinear materials
    Wang, H. S.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 98 : 366 - 371
  • [38] A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method
    Bhowmick, Sauradeep
    Liu, Gui Rong
    ENGINEERING FRACTURE MECHANICS, 2018, 204 : 369 - 387
  • [39] A variationally consistent phase-field anisotropic damage model for fracture
    Wu, Jian-Ying
    Vinh Phu Nguyen
    Zhou, Hao
    Huang, Yuli
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358
  • [40] An hp-adaptive discontinuous Galerkin method for phase field fracture
    Bird, Robert E.
    Augarde, Charles E.
    Coombs, William M.
    Duddu, Ravindra
    Giani, Stefano
    Huynh, Phuc T.
    Sims, Bradley
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416