On global solutions to the 3D viscous, compressible, and heat-conducting magnetohydrodynamic flows

被引:0
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Compressible magnetohydrodynamic equations; Full compressible Navier–Stokes system; Strong solutions; Global existence; Uniqueness; 35B65; 35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the Cauchy problem of three-dimensional viscous, compressible, and heat-conducting magnetohydrodynamic flows. Both some new Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} gradient estimates and the “div-curl” decomposition of ‖∇u‖L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla \text{ u }\Vert _{L^3}$$\end{document} are established; the existence of global solutions to the Cauchy problem with small energy and lower regularity assumed on the initial data are obtained. Furthermore, we also prove that the global solution belongs to a new class of functions in which the uniqueness can be shown to hold.
引用
收藏
相关论文
共 57 条
  • [11] Ducomet B(2005)Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics Z. Angew. Math. Phys. 56 791-804
  • [12] Feireisl E(2013)Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier–Stokes and magnetohydrodynamic flows Commun. Math. Phys. 324 147-171
  • [13] Fan J(2018)Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations Arch. Ration. Mech. Anal. 227 995-1059
  • [14] Jiang S(2011)Serrin type criterion for the three-dimensional viscous compressible flows SIAM J. Math. Anal. 43 1872-1886
  • [15] Nakamura G(2012)Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations Commun. Pure Appl. Math. 65 549-585
  • [16] Fan J(2008)Global solutions to the three-dimensional full compressible magnetohydrodynamic flows Commun. Math. Phys. 283 255-284
  • [17] Li F(2008)Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations J. Differ. Equ. 245 2176-2198
  • [18] Fan J(2010)Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows Arch. Ration. Mech. Anal. 197 203-238
  • [19] Yu W(1982)Smooth global solutions for the one-dimensional equations in magnetohydrodynamics Proc. Jpn. Acad. Ser. A Math. Sci. 58 384-387
  • [20] Freistuhler H(2016)Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum Indiana Univ. Math. J. 65 925-975