On global solutions to the 3D viscous, compressible, and heat-conducting magnetohydrodynamic flows

被引:0
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Compressible magnetohydrodynamic equations; Full compressible Navier–Stokes system; Strong solutions; Global existence; Uniqueness; 35B65; 35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the Cauchy problem of three-dimensional viscous, compressible, and heat-conducting magnetohydrodynamic flows. Both some new Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} gradient estimates and the “div-curl” decomposition of ‖∇u‖L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla \text{ u }\Vert _{L^3}$$\end{document} are established; the existence of global solutions to the Cauchy problem with small energy and lower regularity assumed on the initial data are obtained. Furthermore, we also prove that the global solution belongs to a new class of functions in which the uniqueness can be shown to hold.
引用
收藏
相关论文
共 57 条
  • [1] Beale JT(1984)Remarks on the breakdown of smooth solutions for the 3-D Euler equations Commun. Math. Phys. 94 61-66
  • [2] Kato T(2004)Unique solvability of the initial boundary value problems for compressible viscous fluids J. Math. Pures Appl. 83 243-275
  • [3] Majda A(2002)Global solution of nonlinear magnetohydrodynamics with large initial data J. Differ. Equ. 182 344-376
  • [4] Cho Y(2003)Existence and continuous dependence of large solutions for the magnetohydrodynamic equations Z. Angew. Math. Phys. 54 608-632
  • [5] Choe HJ(2006)The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars Commun. Math. Phys. 226 595-629
  • [6] Kim H(2007)Vanishing shear viscosity limit in the magnetohydrodynamic equations Commun. Math. Phys. 270 691-708
  • [7] Chen GQ(2020)Global strong solutions to the 3D compressible non-isentropic MHD equations with zero resistivity Z. Angew. Math. Phys. 71 1-12
  • [8] Wang D(2009)Strong solutions to the compressible MHD equations with vacuum Nonlinear Anal. Real World Appl. 10 392-409
  • [9] Chen GQ(1995)Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves SIAM J. Math. Anal. 26 112-128
  • [10] Wang D(1995)Global solutions of the Navier-Stokes equations for the multidimensional compressible flow with discontinuous initial data J. Differ. Equ. 120 215-254