Heterotic/type II duality and non-geometric compactifications

被引:0
作者
Y. Gautier
C. M. Hull
D. Israël
机构
[1] LPTHE,The Blackett Laboratory
[2] UMR 7589,undefined
[3] Sorbonne Universités,undefined
[4] CNRS,undefined
[5] UMR 7589,undefined
[6] LPTHE,undefined
[7] Imperial College London,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Conformal Field Models in String Theory; String Duality; Superstring Vacua; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of dualities relating non-geometric Calabi-Yau com- pactifications of type II string theory to T-fold compactifications of the heterotic string, both preserving four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry. The non-geometric Calabi-Yau space is a K 3 fibration over T2 with non-geometric monodromies in the duality group O(Γ4,20); this is dual to a heterotic reduction on a T4 fibration over T2 with the O(Γ4,20) monodromies now viewed as heterotic T-dualities. At a point in moduli space which is a minimum of the scalar potential, the type II compactification becomes an asymmetric Gepner model and the monodromies become automorphisms involving mirror symmetries, while the heterotic dual is an asymmetric toroidal orbifold. We generalise previous constructions to ones in which the automorphisms are not of prime order. The type II construction is perturbatively consistent, but the naive heterotic dual is not modular invariant. Modular invariance on the heterotic side is achieved by including twists in the circles dual to the winding numbers round the T2, and this in turn introduces non-perturbative phases depending on NS5-brane charge in the type II construction.
引用
收藏
相关论文
共 36 条
  • [1] Israël D(2014) = 1 JHEP 02 011-undefined
  • [2] Thiéry V(2017) = 2 JHEP 01 105-undefined
  • [3] Blumenhagen R(2005) 3 JHEP 10 065-undefined
  • [4] Fuchs M(2003) = 4 JHEP 09 054-undefined
  • [5] Plauschinn E(2006)S. Boissière and A. Sarti, JHEP 05 009-undefined
  • [6] Hull CM(2010) 3 Adv. Theor. Math. Phys. 14 1515-undefined
  • [7] Dabholkar A(1996) 3 Nucl. Phys. Proc. Suppl. 46 225-undefined
  • [8] Hull C(2003)undefined Commun. Math. Phys. 243 557-undefined
  • [9] Dabholkar A(2008)undefined JHEP 12 052-undefined
  • [10] Hull C(2014)undefined J. Math. Pures Appl. 102 758-undefined