Large solutions to an anisotropic quasilinear elliptic problem

被引:0
作者
Jorge García-Melián
Julio D. Rossi
José C. Sabina de Lis
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] Universidad de Buenos Aires,Departamento de Matemática, FCEyN UBA
[3] Universidad de La Laguna,Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atomica, Molecular y Fotonica, Facultad de Física
来源
Annali di Matematica Pura ed Applicata | 2010年 / 189卷
关键词
35J70; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm div}_x (|\nabla_x u|^{p-2}\nabla_xu)(x,y) + {\rm div}_y (|\nabla_y u|^{q-2}\nabla_y u) (x, y) = u^r(x, y)$$\end{document}in a bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^N \times \mathbb{R}^M}$$\end{document}, together with the boundary condition u (x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient condition for the existence of a solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in W^{1,p,q}_{loc}(\Omega)}$$\end{document} to this problem is r > max{p−1, q−1}. Assuming that r > q−1 ≥ p−1 > 0 we will show that the exponent q controls the blow-up rates near the boundary in the sense that all points of ∂Ω share the same profile, that depends on q and r but not on p, with the sole exception of the vertical points (where the exponent p plays a role).
引用
收藏
页码:689 / 712
页数:23
相关论文
共 44 条
[11]  
Elgueta M.(2006)Explosive solutions of quasilinear elliptic equations: existence and uniqueness J. Diff. Eqns. 223 208-227
[12]  
García-Melián J.(2009)Extremal functions for the anisotropic Sobolev inequalities Adv. Nonl. Stud. 9 149-160
[13]  
Del Pino M.(2009)Sharp Sobolev asymptotics for critical anisotropic equations Z. Angew. Math. Phys. 60 594-607
[14]  
Letelier R.(2001)Existence and nonexistence results for anisotropic quasilinear elliptic equation Proc. Amer. Math. Soc. 129 3593-3602
[15]  
Díaz G.(1978)Nondegeneracy and uniqueness for boundary blow-up elliptic problems Manuscr. Math. 24 217-220
[16]  
Letelier R.(1957)Quasilinear equations with boundary blow-up and exponential reaction Comm. Pure Appl. Math. 10 503-510
[17]  
El Hamidi A.(1993)Large solutions for equations involving the Nonlinear Anal. 21 327-335
[18]  
Rakotoson J.M.(1988)-Laplacian and singular weights Nonlinear Anal. 12 1203-1219
[19]  
El Hamidi A.(1994)Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 497-522
[20]  
Vétois J.(1989)A counter-example to the boundary regularity of solutions to elliptic quasilinear systems Arch. Rat. Mech. Anal. 105 267-284