Large solutions to an anisotropic quasilinear elliptic problem

被引:0
作者
Jorge García-Melián
Julio D. Rossi
José C. Sabina de Lis
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] Universidad de Buenos Aires,Departamento de Matemática, FCEyN UBA
[3] Universidad de La Laguna,Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atomica, Molecular y Fotonica, Facultad de Física
来源
Annali di Matematica Pura ed Applicata | 2010年 / 189卷
关键词
35J70; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm div}_x (|\nabla_x u|^{p-2}\nabla_xu)(x,y) + {\rm div}_y (|\nabla_y u|^{q-2}\nabla_y u) (x, y) = u^r(x, y)$$\end{document}in a bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^N \times \mathbb{R}^M}$$\end{document}, together with the boundary condition u (x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient condition for the existence of a solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in W^{1,p,q}_{loc}(\Omega)}$$\end{document} to this problem is r > max{p−1, q−1}. Assuming that r > q−1 ≥ p−1 > 0 we will show that the exponent q controls the blow-up rates near the boundary in the sense that all points of ∂Ω share the same profile, that depends on q and r but not on p, with the sole exception of the vertical points (where the exponent p plays a role).
引用
收藏
页码:689 / 712
页数:23
相关论文
共 44 条
[1]  
Bandle C.(1992)‘Large’ solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour J. Anal. Math. 58 9-24
[2]  
Marcus M.(2003)On some anisotropic reaction-diffusion systems with Nonlinear Anal. 54 617-636
[3]  
Bendahmane M.(2006)-data modeling the propagation of an epidemic disease Commun. Pure Appl. Anal. 5 733-762
[4]  
Langlais M.(1916)Renormalized solutions of an anisotropic reaction-diffusion-advection system with Math. Ann. 77 173-212
[5]  
Saad M.(2004) data Comm. Pure Appl. Anal. 3 653-662
[6]  
Bendahmane M.(2002)Δ Nonlinear Anal. 48 897-904
[7]  
Karlsen K.H.(1993) = Nonlinear Anal. 20 97-125
[8]  
Bieberbach L.(2007) und die automorphen Funktionen Ann. Inst. H. Poincaré AN 24 741-756
[9]  
Chuaqui M.(2009)Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights Arch. Rat. Mech. Anal. 192 1-36
[10]  
Cortázar C.(2004)The influence of domain geometry in boundary blow-up elliptic problems Ann. Inst. H. Poincaré AN 21 715-734